Câu hỏi:

12/08/2025 88 Lưu

“Cho hai tiếp tuyến của một đường trong cắt nhau tại một điểm. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi …. Tia nối từ tâm tới điểm đó là tia phân giác của góc tạo bởi …”. Hai cụm từ thích hợp vào chỗ trống lần lượt là:

A. Hai tiếp tuyến, hai bán kính đi qua tiếp điểm.

B. Hai bán kính đi qua tiếp điểm, hai tiếp tuyến.

C. Hai tiếp tuyến, hai dây cung.

D. Hai dây cung, hai bán kính.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax,By với nửa đường tròn cùng phía đối với AB. Từ điểm M trên nửa đường tròn (M khác A,B) vẽ tiếp tuyến  (ảnh 1)

Xét nửa \((O)\) có \(MC\) và \(AC\) là hai tiếp tuyến cắt nhau tại \(C\) nên \(OC\) là phân giác \[\widehat {MOA}\] do đó \[\widehat {AOC} = \widehat {COM}\].

Lại có \(MD\) và \(BD\) là hai tiếp tuyến cắt nhau tại \(D\) nên \(OD\) là phân giác \[\widehat {MOB}\] do đó \[\widehat {DOB} = \widehat {DOM}\].

Từ đó \[\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

Nên \[\widehat {COD} = 90^\circ \] hay \(\Delta COD\) vuông tại \(O\) và \(\widehat {MDO} = \widehat {MOC}\)

Có (g.g) suy ra \(MC.MD = O{M^2}\).

Lời giải

Chọn C

Cho \(\left( {O\;{\rm{;}}\;R} \right)\). Từ điểm \(M\) ở ngoài đường tròn vẽ tiếp tuyến \(MA,MB\) đến đường tròn. Đường trung trực của đường kính \(BC\) cắt đường thẳng \(AC\) tại \(K\). Tính (ảnh 1)

Xét đường tròn \(\left( {O\;{\rm{;}}\;R} \right)\) có \(MA,\;MB\) là tiếp tuyến

Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) \((1)\)

 \(\Delta OAC\) có \[OA = OC\] suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)

\(\widehat {AOB} = \widehat {OCA} + \widehat {OAC}\) (tính chất góc ngoài của tam giác)

Nên \(\widehat {OAC} = \widehat {OCA} = \frac{1}{2}\widehat {AOB}\) \((2)\)

Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\)

 Mà \(\widehat {OCA}\), \(\widehat {BOM}\) ở vị trí đồng vị

Nên \(CK\,{\rm{//}}\,OM\) suy ra\(\widehat {MOK} = \widehat {CKO}\) (so le trong).

Chứng minh\(\left( {O\;{\rm{;}}\;R} \right)\) \(\Delta OAM = \Delta OCK\) (c.g.c) suy ra \(CK = OM\) (hai cạnh tương ứng).

Chứng minh \(\Delta KMO = \Delta OCK\) (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc tương ứng).

Mà \(\widehat {COK} = 90^\circ \)(\(KO\)là trung trực của \(BC\)) suy ra \(\widehat {OKM} = 90^\circ \).

Tứ giác \[{\rm{O}}BMK\] có:

+ \(\widehat {MBO} = 90^\circ \) (\(MB\) là tiếp tuyến của \(\left( {O\;{\rm{;}}\;R} \right)\)).

+ \(\widehat {BOK} = 90^\circ \)(\(KO\) là trung trực của \(BC\)).

+ \(\widehat {OKM} = 90^\circ \) (cmt).

Do đó \(OBMK\) là hình chữ nhật suy ra \(MK = OB = R\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a\) và \(\left( {O;R} \right)\) tiếp xúc nhau khi \(d = R\).

B. \(a\) và \(\left( {O;R} \right)\) cắt nhau khi \(d \le R\).

C. \(a\) và \(\left( {O;R} \right)\) không giao nhau khi \(d > R\).

D. \(a\) và \(\left( {O;R} \right)\) có điểm chung khi \(d \le R\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP