Cho đường tròn \((O)\), bán kính \(OA\). Dây \(CD\) là đường trung trực của \(OA\).Tứ giác \(OCAD\) là hình gì?
A. Hình bình hành.
B. Hình thoi.
C. Hình chữ nhật.
D. Hình thang cân.
Quảng cáo
Trả lời:
Chọn B

Gọi \(H\) là giao của \(OA\) và \(CD\).
Xét \((O)\) có \(OA \bot CD\) nên \(H\) là trung điểm của \(CD\).
Xét tứ giác \(OCAD\) có hai đường chéo \(OA\) và \(CD\) vuông góc với nhau và giao nhau tại trung điểm \(H\) mỗi đường nên \(OCAD\) là hình thoi.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(O{C^2}\).
B. \(O{M^2}\).
C. \(O{D^2}\).
D. \(OM\).
Lời giải
Chọn B

Xét nửa \((O)\) có \(MC\) và \(AC\) là hai tiếp tuyến cắt nhau tại \(C\) nên \(OC\) là phân giác \[\widehat {MOA}\] do đó \[\widehat {AOC} = \widehat {COM}\].
Lại có \(MD\) và \(BD\) là hai tiếp tuyến cắt nhau tại \(D\) nên \(OD\) là phân giác \[\widehat {MOB}\] do đó \[\widehat {DOB} = \widehat {DOM}\].
Từ đó \[\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD} = \frac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].
Nên \[\widehat {COD} = 90^\circ \] hay \(\Delta COD\) vuông tại \(O\) và \(\widehat {MDO} = \widehat {MOC}\)
Có (g.g) suy ra \(MC.MD = O{M^2}\).
Câu 2
A. A. \(MK = R\sqrt 3 \).
B. B. \(MK = 2R\).
C. C. \(MK = R\).
D. D. \(MK = R\sqrt 2 \).
Lời giải
Chọn C

Xét đường tròn \(\left( {O\;{\rm{;}}\;R} \right)\) có \(MA,\;MB\) là tiếp tuyến
Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) \((1)\)
\(\Delta OAC\) có \[OA = OC\] suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)
\(\widehat {AOB} = \widehat {OCA} + \widehat {OAC}\) (tính chất góc ngoài của tam giác)
Nên \(\widehat {OAC} = \widehat {OCA} = \frac{1}{2}\widehat {AOB}\) \((2)\)
Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\)
Mà \(\widehat {OCA}\), \(\widehat {BOM}\) ở vị trí đồng vị
Nên \(CK\,{\rm{//}}\,OM\) suy ra\(\widehat {MOK} = \widehat {CKO}\) (so le trong).
Chứng minh\(\left( {O\;{\rm{;}}\;R} \right)\) \(\Delta OAM = \Delta OCK\) (c.g.c) suy ra \(CK = OM\) (hai cạnh tương ứng).
Chứng minh \(\Delta KMO = \Delta OCK\) (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc tương ứng).
Mà \(\widehat {COK} = 90^\circ \)(\(KO\)là trung trực của \(BC\)) suy ra \(\widehat {OKM} = 90^\circ \).
Tứ giác \[{\rm{O}}BMK\] có:
+ \(\widehat {MBO} = 90^\circ \) (\(MB\) là tiếp tuyến của \(\left( {O\;{\rm{;}}\;R} \right)\)).
+ \(\widehat {BOK} = 90^\circ \)(\(KO\) là trung trực của \(BC\)).
+ \(\widehat {OKM} = 90^\circ \) (cmt).
Do đó \(OBMK\) là hình chữ nhật suy ra \(MK = OB = R\).
Câu 3
A. \(8\,cm\).
B. \(\frac{{8\sqrt 3 }}{3}\,cm\).
C. \(4\,cm\).
D. \(\frac{{4\sqrt 3 }}{3}\,cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(AE{\rm{//}}OD\).
B. \(AE{\rm{//}}BC\).
C. \(AE{\rm{//}}OC\).
D. \(AE{\rm{//}}OB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(a\) và \(\left( {O;R} \right)\) tiếp xúc nhau khi \(d = R\).
B. \(a\) và \(\left( {O;R} \right)\) cắt nhau khi \(d \le R\).
C. \(a\) và \(\left( {O;R} \right)\) không giao nhau khi \(d > R\).
D. \(a\) và \(\left( {O;R} \right)\) có điểm chung khi \(d \le R\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(AB = 3cm\).
B. \(AB = 4cm\).
C. \(AB = 5cm\).
D. \(AB = 2cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[{\rm{R}}\].
B. \[R\sqrt 2 \].
C. \[2R\].
D. \[R\sqrt 3 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.