Câu hỏi:

18/09/2025 64 Lưu

Cho phương trình \[\left( {{m^2} + 1} \right){x^2} - 3mx + 2 = 0\] (\[m\] là tham số). Chọn khẳng định sai

A. Phương trình đã cho là phương trình bậc hai với mọi \(m\).

B. Phương trình vô nghiệm khi và chỉ khi \( - 2\sqrt 2 < m < 2\sqrt 2 \).

C. Phương trình luôn có nghiệm với mọi \(m\).

D. Phương trình có hai nghiệm phân biệt khi và chỉ khi \({m^2} > 8\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Phương trình \[\left( {{m^2} + 1} \right){x^2} - 3mx + 2 = 0\] có \[a = {m^2} + 1 > 0;{\rm{ b = - 3m; c = 2}}\]

Suy ra phương trình đã cho là phương trình bậc hai với mọi \(m\).

Có \[\Delta = {\left( { - 3m} \right)^2} - 4\left( {{m^2} + 1} \right).2 = {m^2} - 8\]

Phương trình vô nghiệm khi và chỉ khi \[\Delta = {m^2} - 8 < 0 \Leftrightarrow {m^2} < 8 \Leftrightarrow - 2\sqrt 2 < m < 2\sqrt 2 \]

Phương trình có nghiệm khi và chỉ khi \[\Delta = {m^2} - 8 \ge 0 \Leftrightarrow {m^2} \ge 8 \Leftrightarrow \left[ \begin{array}{l}m \ge 2\sqrt 2 \\m \le - 2\sqrt 2 \end{array} \right.\]

Phương trình có hai nghiệm phân biệt khi và chỉ khi \[\Delta = {m^2} - 8 > 0 \Leftrightarrow {m^2} > 8\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Phương trình \({x^2} - 2x - 1 = 0\) có \( = 2 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:

\({x_1}^{} + {x_2} = 2\) và \({x_1}{x_2} = - 1\)

\(N = {x_1}^2 + {x_2}^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)

Suy ra \(N = {2^2} - 3\left( { - 1} \right) = 7\).

Lời giải

Chọn A

Phương trình có hai nghiệm phân biệt thì \(\Delta > 0\) hay \({\left( {m - 4} \right)^2} > 0\) nên \(m \ne 4\).

Theo định lí Viète ta có \({x_1} + {x_2} = m\) và \({x_1}{x_2} = 2m - 4\).

\(x_1^3 + x_2^3 = 9\)

\({\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 9\)

\({m^3} - 3\left( {2m - 4} \right)m = 9\)

 \({m^3} - 6{m^2} + 12m - 8 = 1\)

\({\left( {m - 2} \right)^3} = 1\)

\(m - 2 = 1\)

\(m = 3\).

Vậy \(m = 3\) là giá trị cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{x^2}\, - \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].

B. \[{x^2}\, + \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].

C. \[2{x^2}\, - \,3x\, - \,1\, = \,0\].

D. \[2{x^2}\, + \,3x\, - \,1\, = \,0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP