Câu hỏi:

13/08/2025 15 Lưu

Tích các nghiệm của phương trình \[2{x^2}\, - \,x\, - \,2020\, = \,0\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Phương trình \[2{x^2}\, - \,x\, - \,2020\, = \,0\] có \[\Delta \, = \,{\left( { - 1} \right)^2}\, - \,4.2.\left( { - 2020} \right)\, = \,16161\, > \,0\] nên phương trình có hai nghiệm \[{x_1}\,,\,{x_2}\] thỏa mãn định lí Viète: \[{x_1}.{x_2}\, = \,\frac{c}{a}\, = \,\frac{{ - 2020}}{2}\, = \, - 1010\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Phương trình \( - {x^2} + 2x + 1 = 0\) có \( = 2 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:

\({x_1}^{} + {x_2} = 2\) và \({x_1}{x_2} = - 1\)

Do vậy \(Q = {x_1}^3 + {x_2}^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {2^3} - 3\left( { - 1} \right).2 = 14\).

Lời giải

Chọn B

Phương trình \({x^2} - x - 2 = 0\) có \( = 5 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:

\({x_1}^{} + {x_2} = 1\) và \({x_1}{x_2} = - 2\).

Khoảng cách giữa hai điểm biểu diễn hai nghiệm của phương trình trên trục số bằng

\(\left| {{x_1} - {x_2}} \right| = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}} = \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} = \sqrt {{1^2} - 4.( - 2)} = 3\)

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP