Cho phương trình \({x^2} = 2mx + {m^2}\) (\(m\)là tham số) có hai nghiệm phân biệt \({x_1}\); \({x_2}\)thỏa mãn \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{2022}}{{{x_1}{x_2}}} + 1\). Tích các giá trị \(m\)tìm được bằng
A. \(2022\).
B. \( - 2022\).
C. \( - 1011\).
D. \(1011\).
Quảng cáo
Trả lời:
Chọn B
Phương trình \({x^2} = 2mx + {m^2}\) hay \({x^2} - 2mx - {m^2} = 0.\,\,\left( 1 \right)\)
Để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thì \(\Delta ' > 0\) hay \(2{m^2} > 0\) nên \(m \ne 0\)
Theo định lí Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - {m^2}.\end{array} \right.\)
\(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{2022}}{{{x_1}{x_2}}} + 1\)
\(\frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{2022}}{{{x_1}{x_2}}} + 1\)
\(\frac{{2m}}{{ - {m^2}}} = \frac{{2022}}{{ - {m^2}}} + 1\)
\(2m = 2022 - {m^2}\,\,\left( {m \ne 0} \right)\)
\({m^2} + 2m - 2022 = 0.\,\,\left( 2 \right)\)
Phương trình \(\left( 2 \right)\)có hai nghiệm \({m_1}\); \({m_2}\) đều khác \(0\)và thỏa mãn \({m_1}{m_2} = - 2022\).
Vậy tích các giá trị \(m\)tìm được bằng \( - 2022\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(1\).
B. \(\frac{1}{4}\).
C. \(7\).
D. \(\frac{7}{4}\).
Lời giải
Chọn C
Phương trình \({x^2} - 2x - 1 = 0\) có \( = 2 > 0\) nên có hai nghiệm \[{x_1};{x_2}\] thỏa mãn định lí Viète:
\({x_1}^{} + {x_2} = 2\) và \({x_1}{x_2} = - 1\)
\(N = {x_1}^2 + {x_2}^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)
Suy ra \(N = {2^2} - 3\left( { - 1} \right) = 7\).
Câu 2
A. \(m = 3\).
B. \(m = - 3\).
C. \(m = 3\) hoặc \(m = - 3\).
D. \(m = 4\).
Lời giải
Chọn A
Phương trình có hai nghiệm phân biệt thì \(\Delta > 0\) hay \({\left( {m - 4} \right)^2} > 0\) nên \(m \ne 4\).
Theo định lí Viète ta có \({x_1} + {x_2} = m\) và \({x_1}{x_2} = 2m - 4\).
\(x_1^3 + x_2^3 = 9\)
\({\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 9\)
\({m^3} - 3\left( {2m - 4} \right)m = 9\)
\({m^3} - 6{m^2} + 12m - 8 = 1\)
\({\left( {m - 2} \right)^3} = 1\)
\(m - 2 = 1\)
\(m = 3\).
Vậy \(m = 3\) là giá trị cần tìm.
Câu 3
A. \(0\).
B. \(1\).
C. \(2\).
D. \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(m = 0\).
B. \(m = - 4\).
C. \(m = 0\) hoặc \(m = - 4\).
D. \(m = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\sqrt 3 \).
B. \(3\).
C. \(5\).
D. \(\sqrt 5 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[{x^2}\, - \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].
B. \[{x^2}\, + \,\frac{1}{3}x\, - \,\frac{1}{2}\, = \,0\].
C. \[2{x^2}\, - \,3x\, - \,1\, = \,0\].
D. \[2{x^2}\, + \,3x\, - \,1\, = \,0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(m = - 1\).
B. \(m = 1\).
C. \(m = \pm 1\).
D. Không có \(m\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.