Gọi \(r\)và \(R\) lần lượt là bán kính đường tròn nội tiếp và đường tròn ngoại tiếp của một hình tam giác đều. Tỉ số \(\frac{r}{R}\) là:
Quảng cáo
Trả lời:
Chọn D
Giả sử tam giác đều \[ABC\] có đường tròn nội tiếp \[(I)\] tiếp xúc với \[BC\] tại \[H\] \[ \Rightarrow IH \bot BC\]
Vì \[ABC\] là tam giác đều nên \[I\] cũng là tâm đường tròn ngoại tiếp \[\Delta ABC\]
\[ \Rightarrow IH\] là trung trực \[BC\] \[ \Rightarrow H\] là trung điểm \[BC\]
Vì \[I\] là tâm đường tròn nội tiếp tam giác nên \[BI\] là phân giác của \[\widehat {ABC} \Rightarrow \widehat {IBH} = \frac{{\widehat {ABC}}}{2} = \frac{{{{60}^ \circ }}}{2} = {30^ \circ }\] Xét tam giác \[IHB\] ta có
\[\frac{r}{R} = \frac{{IH}}{{IB}} = \sin \widehat {IBH} = \sin {30^ \circ } = \frac{1}{2}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
\[R = \frac{{AC}}{2} = \frac{{5\sqrt 2 }}{2}\,\,{\rm{cm}}\]
Lời giải
Chọn D
Đường chéo của hình vuông có kích thước là \(\sqrt {{5^2} + {5^2}} = 5\sqrt 2 \,{\rm{cm}}\); \[R = \frac{{5\sqrt 2 }}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.