Gọi \(r\)và \(R\) lần lượt là bán kính đường tròn nội tiếp và đường tròn ngoại tiếp của một hình tam giác đều. Tỉ số \(\frac{r}{R}\) là:
Quảng cáo
Trả lời:

Chọn D
Giả sử tam giác đều \[ABC\] có đường tròn nội tiếp \[(I)\] tiếp xúc với \[BC\] tại \[H\] \[ \Rightarrow IH \bot BC\]
Vì \[ABC\] là tam giác đều nên \[I\] cũng là tâm đường tròn ngoại tiếp \[\Delta ABC\]
\[ \Rightarrow IH\] là trung trực \[BC\] \[ \Rightarrow H\] là trung điểm \[BC\]
Vì \[I\] là tâm đường tròn nội tiếp tam giác nên \[BI\] là phân giác của \[\widehat {ABC} \Rightarrow \widehat {IBH} = \frac{{\widehat {ABC}}}{2} = \frac{{{{60}^ \circ }}}{2} = {30^ \circ }\] Xét tam giác \[IHB\] ta có
\[\frac{r}{R} = \frac{{IH}}{{IB}} = \sin \widehat {IBH} = \sin {30^ \circ } = \frac{1}{2}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm cạnh huyền và có bán kính bằng một nửa cạnh huyền của tam giác vuông đó.
Lời giải
Chọn D
Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.