Tam giác \(ABC\) ngoại tiếp đường tròn tâm \(I\) khi đường tròn tâm \(I\)
A. cắt ba cạnh của tam giác \(ABC\).
B. nội tiếp tam giác \(ABC\).
C. đi qua ba đỉnh của tam giác \(ABC\).
D. ngoại tiếp tam giác \(ABC\).
Quảng cáo
Trả lời:
Chọn B
Đường tròn tiếp xúc với ba cạnh của tam giác được gọi là đường tròn nội tiếp tam giác. Tam giác đó gọi là tam giác ngoại tiếp đường tròn.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[2\,cm\].
B. \[3\,cm\].
C. \(6\,cm\).
D. \(12,5\,cm\).
Lời giải
Chọn B
![Cho \(\Delta ABC\) vuông tại \(A\) có: \[AB = 9 cm; AC = 12 cm\], bán kính đường tròn nội tiếp \(\Delta ABC\) bằng (ảnh 1)](https://video.vietjack.com/upload2/images/1755100342/1755100420-image7.png)
\(\Delta ABC\) vuông tại \(A\) có: \[AB{\rm{ }} = {\rm{ }}9{\rm{ }}cm;{\rm{ }}AC{\rm{ }} = {\rm{ }}12{\rm{ }}cm\]\( \Rightarrow BC = 15\,cm\)
\({S_{ABC}} = \frac{1}{2}AB.AC = 54\,c{m^2}\)
Lại có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.AB + \frac{1}{2}r.AC + \frac{1}{2}r.BC\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.\left( {AB + AC + BC} \right)\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.{C_{ABC}}\)
\( \Rightarrow r = \frac{{2{S_{ABC}}}}{{{C_{ABC}}}}\)
\( \Rightarrow r = \frac{{2.54}}{{9 + 12 + 15}} = \frac{{108}}{{36}} = 3\,cm\)
Câu 2
A. \[150\,m\].
B. \[300\,m\].
C. \[450\,m\].
D. \[500\,m\].
Lời giải
Chọn B
Để khách sạn cách đều cả ba con đường thì cần phải được xây vào đúng vị trí tâm nội tiếp \(I\) của tam giác \(ABC.\)
Khi đó cho chiều cao hạ từ đỉnh \(I\) xuống các cạnh \(BC,\,\,CA,\,\,AB\) của các tam giác \(IBC,\,\,ICA,\,\,IAC\) đều bằng bán kính \(r\) của đường tròn nội tiếp tam giác \(ABC.\)
Do đó \({S_{ABC}} = {S_{IBC}} + {S_{ICA}} + {S_{IAB}}\)
\( = \frac{1}{2}r\left( {AB + AC + BC} \right) = \frac{{rc}}{2}.\)
Suy ra \(r = \frac{{2{S_{ABC}}}}{C} = 300\,\,{\rm{m}}{\rm{.}}\)
Vậy khách sạn sẽ cách mỗi con đường là 300 m.
Câu 3
A. \[24\,\,({\rm{c}}{{\rm{m}}^2})\].
B. \[24\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
C. \[12\,\,({\rm{c}}{{\rm{m}}^2})\].
D. \[12\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Tâm là \(A\) và bán kính \(R = a\sqrt 2 \).
B. Tâm là trung điểm cạnh huyền \(AC\) và bán kính \(R = a\sqrt 2 \).
C. Tâm là trung điểm cạnh huyền \(BC\) và bán kính \(R = \frac{{a\sqrt 2 }}{2}\).
D. Tâm là điểm \(B\) và bán kính là \(R = \frac{{a\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[15\,\,({\rm{cm}})\].
B. \[36\,\,({\rm{cm}})\].
C. \[14,5\,\,({\rm{cm}})\].
D. \[7,5\,\,({\rm{cm}})\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(2\sqrt 3 \,{\rm{cm}}\).
B. \(\frac{{\sqrt 3 }}{7}\,{\rm{cm}}\).
C. \(7\sqrt 3 \,{\rm{cm}}\).
D. \(\frac{{7\sqrt 3 }}{3}\,{\rm{cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{{25\pi }}{3}\,{{\rm{m}}^2}\).
B. \(\frac{{25\sqrt 3 }}{3}\,{{\rm{m}}^2}\).
C. \(\frac{{25\pi }}{3}\,{{\rm{m}}^2}\).
D. \(\frac{{25\pi \sqrt 3 }}{9}\,{{\rm{m}}^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
