Một khu dân cư được bao quanh bởi ba con đường thẳng lập thành một tam giác với độ dài các cạnh là \(900{\rm{ }}m\), \(1200{\rm{ }}m\)và \(1500{\rm{ }}m\). Họ muốn xây dựng một khách sạn bên trong khu dân cư cách đều cả ba con đường đó. Hỏi khi đó khách sạn sẽ cách mỗi con đường một khoảng là bao nhiêu?

A. \[150\,m\].
B. \[300\,m\].
C. \[450\,m\].
D. \[500\,m\].
Quảng cáo
Trả lời:
Chọn B
Để khách sạn cách đều cả ba con đường thì cần phải được xây vào đúng vị trí tâm nội tiếp \(I\) của tam giác \(ABC.\)
Khi đó cho chiều cao hạ từ đỉnh \(I\) xuống các cạnh \(BC,\,\,CA,\,\,AB\) của các tam giác \(IBC,\,\,ICA,\,\,IAC\) đều bằng bán kính \(r\) của đường tròn nội tiếp tam giác \(ABC.\)
Do đó \({S_{ABC}} = {S_{IBC}} + {S_{ICA}} + {S_{IAB}}\)
\( = \frac{1}{2}r\left( {AB + AC + BC} \right) = \frac{{rc}}{2}.\)
Suy ra \(r = \frac{{2{S_{ABC}}}}{C} = 300\,\,{\rm{m}}{\rm{.}}\)
Vậy khách sạn sẽ cách mỗi con đường là 300 m.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(2\sqrt 3 \,{\rm{cm}}\).
B. \(\frac{{\sqrt 3 }}{7}\,{\rm{cm}}\).
C. \(7\sqrt 3 \,{\rm{cm}}\).
D. \(\frac{{7\sqrt 3 }}{3}\,{\rm{cm}}\).
Lời giải
Chọn C
Bán kính đường tròn tâm \(O\): \(r = \frac{7}{2} = 3,5\,\left( {{\rm{cm}}} \right)\)
Độ dài cạnh \(AB\) là: \(\frac{{6r}}{{\sqrt 3 }} = \frac{{6\,\,.\,\,3,5}}{{\sqrt 3 }} = 7\sqrt 3 \,\left( {{\rm{cm}}} \right)\).
Câu 2
A. \[24\,\,({\rm{c}}{{\rm{m}}^2})\].
B. \[24\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
C. \[12\,\,({\rm{c}}{{\rm{m}}^2})\].
D. \[12\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].
Lời giải
Chọn D

Tam giác \[ABC\] đều cạnh \(a\) có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{3}\).
Suy ra \(3R = a\sqrt 3 \)hay \(a = R\sqrt 3 = 4\sqrt 3 \,\,{\rm{(cm)}}\)
Mặt khác \[O\] là trọng tâm tam giác\[ABC\] và \[AH\] vừa là đường cao và đường trung tuyến xuất phát từ đỉnh \(A\). Suy ra \(R = AO = \frac{2}{3}\; \cdot \;AH\). Hay \(AH = \frac{{3R}}{2} = \frac{{3\;.\;4}}{2} = 6\,\,({\rm{cm)}}\)
Diện tích tam giác \[ABC\] là \({\rm{S = }}\frac{1}{2}\; \cdot \;AH.BC = \frac{1}{2}\; \cdot \;6.4\sqrt 3 = 12\sqrt 3 \,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Câu 3
A. \[2\,cm\].
B. \[3\,cm\].
C. \(6\,cm\).
D. \(12,5\,cm\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Tâm là \(A\) và bán kính \(R = a\sqrt 2 \).
B. Tâm là trung điểm cạnh huyền \(AC\) và bán kính \(R = a\sqrt 2 \).
C. Tâm là trung điểm cạnh huyền \(BC\) và bán kính \(R = \frac{{a\sqrt 2 }}{2}\).
D. Tâm là điểm \(B\) và bán kính là \(R = \frac{{a\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\Delta \,ABC\) vuông tại \(A\).
B. Điểm \(B\) thuộc đường tròn đường kính \(AC\).
C. Đường tròn ngoại tiếp \(\Delta ABC\) có tâm là trung điểm cạnh \(BC\).
D. Điểm \(A\) thuộc đường tròn đường kính \(BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[15\,\,({\rm{cm}})\].
B. \[36\,\,({\rm{cm}})\].
C. \[14,5\,\,({\rm{cm}})\].
D. \[7,5\,\,({\rm{cm}})\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.