Câu hỏi:

17/09/2025 32 Lưu

Tam giác \(ABC\) vuông tại \(A\) nội tiếp đường tròn \(\left( {O\;;\;7,5\,{\rm{cm}}} \right)\). Biết \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Chu vi \(\Delta ABC\) là:

A. \[15\,\,({\rm{cm}})\].

B. \[36\,\,({\rm{cm}})\].

C. \[14,5\,\,({\rm{cm}})\].

D. \[7,5\,\,({\rm{cm}})\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Tam giác \(ABC\) vuông tại \(A\) nội tiếp đường tròn \(\left( {O\;;\;7,5\,{\rm{cm}}} \right)\) do đó cạnh huyền \(BC\) là đường kính.

Suy ra \(BC = 2.7,5 = 15\;\left( {{\rm{cm}}} \right)\).

Theo định lí Pythagore ta có \(B{C^2} = A{B^2} + A{C^2}\) \(\left( 1 \right)\)

Lại có \(\frac{{AB}}{{AC}} = \frac{3}{4}\) hay \(AB = \frac{3}{4}AC\) và \(BC = 15\,{\rm{cm}}\), thay vào \(\left( 1 \right)\) ta được:

\({\left( {\frac{3}{4}AC} \right)^2} + A{C^2} = {15^2}\) suy ra \(\frac{{25}}{{16}}A{C^2} = 225\) do đó \(AC = 12\;\left( {{\rm{cm}}} \right)\).

Với \(AC = 12\;\left( {{\rm{cm}}} \right)\) thì \(AB = \frac{3}{4}\; \cdot \;12 = 9\;\left( {{\rm{cm}}} \right)\).

Vậy chu vi tam giác \(ABC\) là \(AB + AC + BC = 9 + 12 + 15 = 36\;\left( {{\rm{cm}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2\sqrt 3 \,{\rm{cm}}\).

B. \(\sqrt 3 \,{\rm{cm}}\).

C. \(\frac{{2\sqrt 3 }}{3}\,{\rm{cm}}\).

D. \(\frac{{\sqrt 3 }}{2}\,{\rm{cm}}\).

Lời giải

Chọn A

Ta có: Tam giác đều cạnh \(a\) có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{3}\).

Nên tam giác đều cạnh \(3\,{\rm{cm}}\) có bán kính đường tròn ngoại tiếp là \(R = \frac{{3\sqrt 3 }}{3} = \sqrt 3 \,\,({\rm{cm}})\).

Do đó đường kính đường tròn ngoại tiếp tam giác đó là \(2R = 2\sqrt 3 \;\left( {{\rm{cm}}} \right)\).

Câu 2

A. \[6\,{\rm{c}}{{\rm{m}}^2}\].

B. \[6\sqrt 3 \,{\rm{c}}{{\rm{m}}^2}\].

C. \[3\,{\rm{c}}{{\rm{m}}^2}\].

D. \[3\sqrt 3 \,{\rm{c}}{{\rm{m}}^2}\].

Lời giải

Chọn D

Tính diện tích tam giác đều nội tiếp đường tròn (O; 2 cm) (ảnh 1)

Gọi tam giác \[ABC\]đều cạnh \[a\] nội tiếp \[\left( {O\,;\,2\,{\rm{cm}}} \right)\]

Khi đó \[O\] là trọng tâm tam giác \[ABC\] và cũng là tâm đường tròn ngoại tiếp tam giác \[ABC\] nên \(AO\, = \,2\,{\rm{cm}}\). Gọi \[AH\] là đường trung tuyến \(\frac{2}{3}AH\,\, = \,AO\, = \,2\,{\rm{cm}} \Rightarrow AH\, = \,3\,{\rm{cm}}\).

Theo định lý Pythagore ta có \[A{H^2}\, = \,A{B^2} - B{H^2}\, = \,\frac{{3{a^2}}}{4}\, \Rightarrow \,AH\, = \,\frac{{a\sqrt 3 }}{2}\].

Từ đó ta có \[3\, = \,\frac{{a\sqrt 3 }}{2}\, \Rightarrow \,a\, = \,\frac{6}{{\sqrt 3 }}\, = \,2\sqrt 3 \,{\rm{cm}}\].

Diện tích tam giác \[ABC\] là \({\rm{S}}\,{\rm{ = }}\frac{1}{2}AH.BC\, = \,\frac{1}{2}.3.2\sqrt 3 \, = \,3\sqrt 3 \,\left( {c{m^2}} \right)\).

Câu 3

A. \(\Delta \,ABC\) vuông tại \(A\).

B. Điểm \(B\) thuộc đường tròn đường kính \(AC\).

C. Đường tròn ngoại tiếp \(\Delta ABC\) có tâm là trung điểm cạnh \(BC\).

D. Điểm \(A\) thuộc đường tròn đường kính \(BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(R = 8\sqrt 2 \,{\rm{cm}}\).

B. \(R = 4\,{\rm{cm}}\).

C. \(R = \frac{{8\sqrt 2 }}{2}\,{\rm{cm}}\).

D. \(R = \frac{{8\sqrt 3 }}{2}\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. giao điểm hai đường chéo của hình chữ nhật và cách mỗi đỉnh một khoảng bằng \(3\,{\rm{cm}}\).

B. giao điểm hai đường chéo của hình chữ nhật và cách mỗi đỉnh một khoảng bằng \(2,5\,{\rm{cm}}\).

C. giao điểm hai đường chéo của hình chữ nhật và cách mỗi đỉnh một khoảng bằng \(4\,{\rm{cm}}\).

D. giao điểm hai đường chéo của chữ nhật và cách mỗi đỉnh một khoảng bằng \(5\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[30\,\,({\rm{cm)}}\]

B. \[10\,\,({\rm{cm)}}\].

C. \[20\,\,({\rm{cm)}}\].

D. \[15\,\,({\rm{cm)}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{3\sqrt 3 }}{3}\,{\rm{cm}}\).

B. \(3\sqrt 3 \,{\rm{cm}}\).

C. \(\frac{{3\sqrt 3 }}{2}\,{\rm{cm}}\).

D. \(\frac{{9\sqrt 3 }}{2}\,{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP