Câu hỏi:

17/09/2025 87 Lưu

Tính diện tích của tam giác đều nội tiếp \(\left( {O\;;\;4\,{\rm{cm}}} \right)\).

A. \[24\,\,({\rm{c}}{{\rm{m}}^2})\].

B. \[24\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].

C. \[12\,\,({\rm{c}}{{\rm{m}}^2})\].

D. \[12\sqrt 3 \,\,({\rm{c}}{{\rm{m}}^2})\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Tính diện tích của tam giác đều nội tiếp \(\left( {O\;;\;4\,{\rm{cm}}} \right)\). (ảnh 1)

Tam giác \[ABC\] đều cạnh \(a\) có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{3}\).

Suy ra \(3R = a\sqrt 3 \)hay \(a = R\sqrt 3 = 4\sqrt 3 \,\,{\rm{(cm)}}\)

Mặt khác \[O\] là trọng tâm tam giác\[ABC\] và \[AH\] vừa là đường cao và đường trung tuyến xuất phát từ đỉnh \(A\). Suy ra \(R = AO = \frac{2}{3}\; \cdot \;AH\). Hay \(AH = \frac{{3R}}{2} = \frac{{3\;.\;4}}{2} = 6\,\,({\rm{cm)}}\)

Diện tích tam giác \[ABC\] là \({\rm{S = }}\frac{1}{2}\; \cdot \;AH.BC = \frac{1}{2}\; \cdot \;6.4\sqrt 3 = 12\sqrt 3 \,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2\sqrt 3 \,{\rm{cm}}\).

B. \(\frac{{\sqrt 3 }}{7}\,{\rm{cm}}\).

C. \(7\sqrt 3 \,{\rm{cm}}\).

D. \(\frac{{7\sqrt 3 }}{3}\,{\rm{cm}}\).

Lời giải

Chọn C

Bán kính đường tròn tâm \(O\): \(r = \frac{7}{2} = 3,5\,\left( {{\rm{cm}}} \right)\)

Độ dài cạnh \(AB\) là: \(\frac{{6r}}{{\sqrt 3 }} = \frac{{6\,\,.\,\,3,5}}{{\sqrt 3 }} = 7\sqrt 3 \,\left( {{\rm{cm}}} \right)\).

Lời giải

Chọn B

Cho \(\Delta ABC\) vuông tại \(A\) có: \[AB  =  9 cm; AC  =  12 cm\], bán kính đường tròn nội tiếp \(\Delta ABC\) bằng (ảnh 1)

\(\Delta ABC\) vuông tại \(A\) có: \[AB{\rm{ }} = {\rm{ }}9{\rm{ }}cm;{\rm{ }}AC{\rm{ }} = {\rm{ }}12{\rm{ }}cm\]\( \Rightarrow BC = 15\,cm\)

\({S_{ABC}} = \frac{1}{2}AB.AC = 54\,c{m^2}\)

Lại có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.AB + \frac{1}{2}r.AC + \frac{1}{2}r.BC\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.\left( {AB + AC + BC} \right)\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}r.{C_{ABC}}\)

\( \Rightarrow r = \frac{{2{S_{ABC}}}}{{{C_{ABC}}}}\)

\( \Rightarrow r = \frac{{2.54}}{{9 + 12 + 15}} = \frac{{108}}{{36}} = 3\,cm\)

Câu 3

A. Tâm là \(A\) và bán kính \(R = a\sqrt 2 \).

B. Tâm là trung điểm cạnh huyền \(AC\) và bán kính \(R = a\sqrt 2 \).

C. Tâm là trung điểm cạnh huyền \(BC\) và bán kính \(R = \frac{{a\sqrt 2 }}{2}\).

D. Tâm là điểm \(B\) và bán kính là \(R = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\Delta \,ABC\) vuông tại \(A\).

B. Điểm \(B\) thuộc đường tròn đường kính \(AC\).

C. Đường tròn ngoại tiếp \(\Delta ABC\) có tâm là trung điểm cạnh \(BC\).

D. Điểm \(A\) thuộc đường tròn đường kính \(BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP