Một hình cầu có số đo thể tích (tính bằng ) gấp đôi số đo diện tích bề mặt (tính bằng ) Bán kính của hình cầu đó bằng
Câu hỏi trong đề: 50 bài tập Hình khối trong thực tiễn có lời giải !!
Quảng cáo
Trả lời:

Chọn A
Gọi bán kính của hình cầu là \[R\].
Thể tích và diện tích bề mặt của hình cầu đấy lần lượt là \[\frac{4}{3}\pi {R^3}\] và \[4\pi {R^2}\].
Theo giả thiết ta có \[\frac{4}{3}\pi {R^3} = 2.4\pi .{R^2} \Leftrightarrow \frac{R}{3}\, = 2 \Leftrightarrow R = 6\]
Vậy bán kính của hình cầu là \[6\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Từ giả thiết ta có \[4\pi {R^2} = 2.\frac{4}{3}\pi {R^3} \Rightarrow {R^3} = \frac{3}{2}{R^2} \Rightarrow R = \frac{3}{2}\]
Lời giải
Chọn D
Gọi \[h\] và \[l\] theo thứ tự là chiều cao và đường sinh của hình nón. Khi đó:
Diện tích xung quanh của hình nón là \(\pi rl\).
Diện tích đáy của hình nón là \(\pi {r^2}\).
Vì hình nón có diện tích xung quanh gấp đôi diện tích đáy nên \(\pi rl = 2\pi {r^2} \Rightarrow l = 2r\).
Lại có \({l^2} = {h^2} + {r^2} \Rightarrow {h^2} = {l^2} - {r^2} = {\left( {2r} \right)^2} - {r^2} = 3{r^2} \Rightarrow h = r\sqrt 3 \).
Vậy thể tích của hình nón là \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {r^2}.r\sqrt 3 = \frac{{\sqrt 3 }}{3}\pi {r^3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.