Câu hỏi:

19/08/2025 258 Lưu

Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz , hai con đường đó thuộc hai đường thẳng lần lượt có phương trình:

Δ1:x12=y1=z+13 và Δ2:x31=y+11=z1

a) Hai con đường trên có vuông góc với nhau hay không?

b) Nút giao thông trên có phải là nút giao thông khác mức hay không?

Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz , hai con đường đó thuộc hai đường thẳng lần lượt có phương trình (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đường thắng \({\Delta _1}\) đi qua \({\rm{A}}(1;0; - 1)\) có vectơ chí phương \(\overrightarrow {{u_1}}  = (2; - 1;3)\)

Đường thắng \({\Delta _2}\) đi qua \({\rm{B}}(3; - 1;0)\) có vectơ chí phương \(\overrightarrow {{u_2}}  = ( - 1;1;1)\) vi \(\overrightarrow {{u_1}}  \cdot \overrightarrow {{u_2}}  =  - 2 - 1 + 3 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.

b) Ta có \(\overrightarrow {AB}  = (2; - 1;1),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 4; - 5;1) \ne \vec 0\), và \(\overrightarrow {AB}  \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] =  - 8 + 5 + 1 =  - 2 \ne 0\)

Do đó \({\Delta _1}\) và \({\Delta _2}\) chéo nhau. Vậy nút giao thông trên là nút giao thông khác mức.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).

b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).

Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM}  = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1}  = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM}  = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).

Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).

Do \(\overrightarrow {AM}  = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} =  - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} =  - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)

Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).

Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}}  = \sqrt {656100}  = 810(\;{\rm{m}})\).

d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến k=(0;0;1)
Do đó, ta có: sin(Δ,(Oxy))=|cos(u,k)|=|uk||u||k|=131=13.  Vậy (Δ,(Oxy))19°

Lời giải

a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}}  = \sqrt {34} (\;{\rm{m}})\);

\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}}  = \sqrt {45}  = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)

b) Ta có: \(\overrightarrow {OA}  = (3; - 4;2),\overrightarrow {OB}  = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)

Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).

Mặt khác, do \(\overrightarrow {CA}  = (3; - 4; - 3),\overrightarrow {BC}  = (5;2;4)\) nên ta có:

- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA}  \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34}  \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),

suy ra (CA,(OAB))50° . Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng 50° .

 - sin(BC,(OAB))=|cos(BC,n)|=|BCn||BC||n|=|50+21+42|355=23

suy ra (BC,(OAB))42° . Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng 42° .