Câu hỏi:

18/08/2025 50 Lưu

Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng \(M\). Cho biết \(M\) đang nằm trên mặt sân có phương trình \(z = 0\), đồng thời thuộc mặt cầu \((S):{(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\) (đơn vị độ dài tính theo mét).

Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng M (ảnh 1)

a) Tìm toạ độ tâm \(I\) và bán kính \(R\) của mặt cầu \((S)\).

b) Tìm toạ độ hình chiếu vuông góc \(J\) của tâm \(I\) trên mặt sân.

c) Tính khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng M (ảnh 2)

a) Mặt cầu \((S)\) có phương trình

\({(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\)

nên có tâm \(I(32;50;10)\) và bán kính \(R = \sqrt {109} \).

b) Trong không gian Oxyz, mặt sân có phương trình \(z = 0\) trùng với mặt phẳng tọa độ \((Oxy)\), suy ra hình chiếu vuông góc của điểm \(I(32;50;10)\) xuống mặt sân có toạ độ \(J(32;50;0)\).

c) Trong tam giác vuông IJM, ta có \(IJ = 10,IM = {\rm{R}}\), suy ra

\(JM = \sqrt {I{M^2} - I{J^2}}  = \sqrt {109 - 100}  = 3.\)

Vậy khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) là 3 m .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Mặt cầu \((S)\) có tâm \(I( - 6; - 1;4)\) và bán kính \(R = 2\) nên có phương trình:

\({(x + 6)^2} + {(y + 1)^2} + {(z - 4)^2} = 4.{\rm{ }}\)

b) Ta có \(IM = \sqrt 3  < R\), suy ra điểm \(M\) nằm trong mặt cầu \((S)\) và người đó có thể sử dụng được dịch vụ của trạm nói trên.

c) Ta có \(IN = \sqrt {35}  > R\), suy ra điểm \(N\) nằm ngoài mặt cầu \((S)\) và người đó không thể sử dụng được dịch vụ của trạm nói trên.

Lời giải

Gọi tọa độ điểm M là \({\rm{M}}({\rm{x}}\); y ; z) .

Ta có MA \( = \sqrt {{{(3 - x)}^2} + {{( - 1 - y)}^2} + {{(6 - z)}^2}}  = 6\);

\(\begin{array}{l}{\rm{MB}} = \sqrt {{{(1 - x)}^2} + {{(4 - y)}^2} + {{(8 - z)}^2}}  = 7;{\rm{MC}} = \sqrt {{{(7 - x)}^2} + {{(9 - y)}^2} + {{(6 - z)}^2}}  = 12;\\{\rm{MD}} = \sqrt {{{(7 - x)}^2} + {{( - 15 - y)}^2} + {{(18 - z)}^2}}  = 24.{\rm{ }}\end{array}\)

Ta có hệ phương trình \({\rm{ }}\left\{ {\begin{array}{*{20}{l}}{{{(3 - x)}^2} + {{( - 1 - y)}^2} + {{(6 - z)}^2} = 36}\\{{{(1 - x)}^2} + {{(4 - y)}^2} + {{(8 - z)}^2} = 49}\\{{{(7 - x)}^2} + {{(9 - y)}^2} + {{(6 - z)}^2} = 144}\\{{{(7 - x)}^2} + {{( - 15 - y)}^2} + {{(18 - z)}^2} = 576}\end{array}} \right.\)

Lấy (3) - (1) ta được: \({(7 - x)^2} - {(3 - x)^2} + {(9 - y)^2} - {( - 1 - y)^2} = 144 - 36\) \( \Leftrightarrow  - 8{\rm{x}} - 20{\rm{y}} =  - 12 \Leftrightarrow 2{\rm{x}} + 5{\rm{y}} = 3 \Leftrightarrow {\rm{x}} = \frac{{3 - 5y}}{2}\) (5).

Lấy (4) - (3) ta được: \({( - 15 - y)^2} - {(9 - y)^2} + {(18 - z)^2} - {(6 - z)^2} = 576 - 144\) \( \Leftrightarrow 48y - 24z = 0 \Leftrightarrow 2y - z = 0 \Leftrightarrow z = 2y{\rm{  }}(6)\).

Thay (5) và (6) vào (2) ta được: \({\left( {1 - \frac{{3 - 5y}}{2}} \right)^2} + {(4 - {\rm{y}})^2} + {(8 - 2{\rm{y}})^2} = 49\) \( \Leftrightarrow 45{y^2} - 170y + 125 = 0 \Leftrightarrow y = 1\) hoặc \(y = \frac{{25}}{9}\).

+ Với \(y = 1\) thì \(x =  - 1,z = 2\). Khi đó \(M( - 1;1;2)\).

Thử lại bằng cách thay \(x =  - 1,y = 1,z = 2\) vào các phương trình (1), (2), (3), (4) ta thấy thóa mãn. + Với \(y = \frac{{25}}{9}\) thì \(x =  - \frac{{49}}{9},z = \frac{{50}}{9}\). Khi đó \({\rm{M}}\left( { - \frac{{49}}{9};\frac{{25}}{9};\frac{{50}}{9}} \right)\).

Thử lại bằng cách thay \(x =  - \frac{{49}}{9},y = \frac{{25}}{9},z = \frac{{50}}{9}\) vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn. Vậy \({\rm{M}}( - 1;1;2)\) là điếm cằn tìm.