Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng \(M\). Cho biết \(M\) đang nằm trên mặt sân có phương trình \(z = 0\), đồng thời thuộc mặt cầu \((S):{(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\) (đơn vị độ dài tính theo mét).
a) Tìm toạ độ tâm \(I\) và bán kính \(R\) của mặt cầu \((S)\).
b) Tìm toạ độ hình chiếu vuông góc \(J\) của tâm \(I\) trên mặt sân.
c) Tính khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\).
Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng \(M\). Cho biết \(M\) đang nằm trên mặt sân có phương trình \(z = 0\), đồng thời thuộc mặt cầu \((S):{(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\) (đơn vị độ dài tính theo mét).

a) Tìm toạ độ tâm \(I\) và bán kính \(R\) của mặt cầu \((S)\).
b) Tìm toạ độ hình chiếu vuông góc \(J\) của tâm \(I\) trên mặt sân.
c) Tính khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\).
Quảng cáo
Trả lời:


a) Mặt cầu \((S)\) có phương trình
\({(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\)
nên có tâm \(I(32;50;10)\) và bán kính \(R = \sqrt {109} \).
b) Trong không gian Oxyz, mặt sân có phương trình \(z = 0\) trùng với mặt phẳng tọa độ \((Oxy)\), suy ra hình chiếu vuông góc của điểm \(I(32;50;10)\) xuống mặt sân có toạ độ \(J(32;50;0)\).
c) Trong tam giác vuông IJM, ta có \(IJ = 10,IM = {\rm{R}}\), suy ra
\(JM = \sqrt {I{M^2} - I{J^2}} = \sqrt {109 - 100} = 3.\)
Vậy khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) là 3 m .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sáng trên biển của hải đăng là:
\({(x - 21)^2} + {(y - 35)^2} + {(z - 50)^2} = {4000^2}.\)
b) Ta có: \(IC = \sqrt {{{(42 - 21)}^2} + {{(37 - 35)}^2} + {{(0 - 50)}^2}} \)
\( = \sqrt {2945} < 4000.{\rm{ }}\)
Vì \(IC < R\) nên điểm \(C\) nằm trong mặt cầu. Vậy người đi biển ở điểm \(C(42;37;0)\) thì có thể nhìn thấy được ánh sáng từ ngọn hải đăng.
c) \({\rm{ Ta có : }}ID = \sqrt {{{(5121 - 21)}^2} + {{(658 - 35)}^2} + {{(0 - 50)}^2}} \)\( = \sqrt {26400629} > 4000.\)
Vì \(ID > R\) nên điểm \(D\) nằm ngoài mặt cầu. Vậy người đi biển ở điểm \(D(5121;658;0)\) không thể nhìn thấy được ánh sáng từ ngọn hải đăng.
d)
Đường thắng ID đi qua điếm I và nhận \(\overrightarrow {ID} = (5100;623; - 50)\) làm vectơ chỉ phương.
Phương trình tham số của đường thắng ID là \(\left\{ {\begin{array}{*{20}{l}}{x = 21 + 5100t}\\{y = 35 + 623t}\\{z = 50 - 50t}\end{array}} \right.\) (t là tham số).
Giả sử H là vị trí cuối cùng trên đoạn thắng ID sao cho người đi biến có thế nhìn thấy ánh sáng từ ngọn hái đăng. Khi đó \({\rm{IH}} = {\rm{R}}\).
Ta có \({\rm{H}} \in {\rm{ID}}\) nên gọi tọa độ điếm \({\rm{H}}(21 + 5100{\rm{t}};35 + 623{\rm{t}};50 - 50{\rm{t}})\).
\(\begin{array}{l}\overrightarrow {IH} = (5100t;623t; - 50t)\\IH = R \Leftrightarrow \sqrt {{{(5100t)}^2} + {{(623t)}^2} + {{( - 50t)}^2}} = 4000 \Leftrightarrow \sqrt {26400629{t^2}} = 4000 \Leftrightarrow t \approx \pm 0,78.\end{array}\)
+ Với \( \approx \approx 0,78\), ta có \({\rm{H}}(3999;520,94;11),\overrightarrow {IH} = (3978;485,94; - 39)\).
Khi đó \(\overrightarrow {ID} = \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) cùng hướng, vậy thóa mãn H thuộc đoạn thắng ID .
+ Với \({\rm{t}} \approx - 0,78\), ta có \({\rm{H}}( - 3957; - 450,94;89),\overrightarrow {IH} = ( - 3978; - 485,94;39)\).
Khi đó \(\overrightarrow {ID} = - \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) ngược hướng, vậy H không thuộc đoạn thắng ID .
Vậy vị trí cuối cù̀ng trên đoạn thẳng ID sao cho người đi biến còn có thế nhìn thấy được ánh sáng từ ngọn hải đăng là điếm \({\rm{H}}(3999;520,94;11)\).
Lời giải
a) Phương trình tham số của đường thẳng d đi qua điểm \({\rm{A}}( - 688\); - 185; 8) và có vectơ chỉ phương \(\vec u = (91;75;0)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 688 + 91t}\\{y = - 185 + 75t{\rm{ (t là tham s?)}}{\rm{. }}}\\{z = 8}\end{array}} \right.\)
Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.
Vi B \(B\) d nên B(- 688 + 91t; - 185 + 75t; 8).
\(B\) là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa khi \({\rm{OB}} = 417\), tức là \(\sqrt {{{( - 688 + 91t)}^2} + {{( - 185 + 75t)}^2} + {8^2}} = 417\)\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)\( \Leftrightarrow t = 3{\rm{ hay }}t = 8.{\rm{ }}\)
\( + {\rm{ Vì }} = 3,{\rm{ ta có }}B( - 415;40;8){\rm{. }}\)
+ Với \( = 3\), ta có \(B( - 415;40;8)\).
Khi đó \({\rm{AB}} = \sqrt {{{( - 415 + 688)}^2} + {{(40 + 185)}^2}} \approx 353,77\).
+ Với \({\rm{t}} = 8\), ta có \({\rm{B}}( - 88;415;8)\). Khi đó \(AB = \sqrt {{{( - 88 + 688)}^2} + {{(415 + 185)}^2}} \approx 848,53\).
Vi \(353,77 < 848,53\) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là \(( - 415;40;8)\).
b) Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi \({\rm{OH}} \bot {\rm{d}}\).
Vi H \( \in \) d nên \(H( - 688 + 91t\) '; - \(185 + 75\) t'; 8).
Ta có \(\overrightarrow {OH} = ( - 688 + 91t; - 185 + 75t;8)\).
\({\rm{OH}} \bot {\rm{d}} \Leftrightarrow \overrightarrow {OH} \bot \vec u \Leftrightarrow \overrightarrow {OH} \cdot \vec u = 0\)
\( \Leftrightarrow ( - 688 + 91t) \cdot 91 + ( - 185 + 75t) \cdot 75 + 8 \cdot 0 = 0\)
\( \Leftrightarrow 13906{{\rm{t}}^\prime } - 76483 = 0 \Leftrightarrow {{\rm{t}}^\prime } = \frac{{11}}{2}\). Suy ra H \(\left( { - \frac{{375}}{2};\frac{{455}}{2};8} \right)\).
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
\({\rm{OH}} = \sqrt {{{\left( { - \frac{{375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}} \approx 294,92(\;{\rm{km}}){\rm{. }}\)
c) Từ kết quả ở câu a), ta suy ra toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa là \(( - 88;415;8)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.