Hình vẽ minh hoạ đường bay của một chiếc trực thăng \(H\) cất cánh từ một sân bay. Xét hệ trục tọa độ Oxyz có gốc tọa độ \(O\) là chân tháp điều khiển của sân bay; trục Ox là hưởng đông, trục Oy là hướng bắc và trục Oz là trục thẳng đứng, đơn vị trên mỗi trục là kilômét.
Trực thăng cất cánh từ điểm \(G\). Vectơ \(\vec r\) chỉ vị trí của trực thăng tại thời điểm \(t\) phút sau khi cất cánh \((t \ge 0)\) có toạ độ là: \(\vec r = (1 + t;0,5 + 2t;2t)\).
a) Tìm góc \(\theta \) mà đường bay tạo với phương ngang.
b) Lập phương trình đường thẳng GF, trong đó \(F\) là hình chiếu của điểm \(H\) lên mặt phẳng \((Oxy)\).
c) Trực thăng bay vào mây ở độ cao 2 km . Tìm tọ̣ độ điểm mà máy bay trực thăng bắt đầu đi vào đám mây.
d) Giả sử một đỉnh núi nằm ở điểm \(M(5;4,5;3)\). Tìm giá trị của \(t\) khi HM vuông góc với đường bay GH. Tìm khoảng cách từ máy bay trực thăng đến đỉnh núi tại thời điểm đó.
Hình vẽ minh hoạ đường bay của một chiếc trực thăng \(H\) cất cánh từ một sân bay. Xét hệ trục tọa độ Oxyz có gốc tọa độ \(O\) là chân tháp điều khiển của sân bay; trục Ox là hưởng đông, trục Oy là hướng bắc và trục Oz là trục thẳng đứng, đơn vị trên mỗi trục là kilômét.
Trực thăng cất cánh từ điểm \(G\). Vectơ \(\vec r\) chỉ vị trí của trực thăng tại thời điểm \(t\) phút sau khi cất cánh \((t \ge 0)\) có toạ độ là: \(\vec r = (1 + t;0,5 + 2t;2t)\).

a) Tìm góc \(\theta \) mà đường bay tạo với phương ngang.
b) Lập phương trình đường thẳng GF, trong đó \(F\) là hình chiếu của điểm \(H\) lên mặt phẳng \((Oxy)\).
c) Trực thăng bay vào mây ở độ cao 2 km . Tìm tọ̣ độ điểm mà máy bay trực thăng bắt đầu đi vào đám mây.
d) Giả sử một đỉnh núi nằm ở điểm \(M(5;4,5;3)\). Tìm giá trị của \(t\) khi HM vuông góc với đường bay GH. Tìm khoảng cách từ máy bay trực thăng đến đỉnh núi tại thời điểm đó.
Quảng cáo
Trả lời:

a) Ta có góc \(\theta \) mà đường bay tạo với phương ngang chính là góc giữa đường thẳng GH và mặt phẳng \(({\rm{Oxy}})\).
Tại thời điểm \({\rm{t}} = 0\) thì \(\overrightarrow {{r_0}} = (1;0,5;0)\). Trực thăng cất cánh từ điểm \(G\) nên \({\rm{G}}(1;0,5;0)\).
Tại thời điểm \({\rm{t}} = 1\), trực thăng bay đến vị trí K thuộc đường thẳng GH với \({\rm{K}}(2\); 2,5 ; 2 ).
Đường thẳng GH có vectơ chỉ phương \(\overrightarrow {GK} = (1;2;2)\) và mặt phẳng \(({\rm{Oxy}})\) có vectơ pháp tuyến \(\vec k = (0;0;1)\)
Ta có \(\sin ({\rm{GH}},({\rm{Oxy}})) = \frac{{|1 \cdot 0 + 2 \cdot 0 + 2 \cdot 1|}}{{\sqrt {{1^2} + {2^2} + {2^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{2}{3}\).
Suy ra . Vậy
b) Gọi \({{\rm{K}}^\prime }\) là hình chiếu của điểm K lên mặt phẳng (Oxy). Khi đó K (2; 2,5 ; 0).
Vi F là hình chiếu của điểm H lên mặt phẳng (Oxy) nên \({{\rm{K}}^\prime } \in {\rm{GF}}\).
Do đó đường thẳng GF có vectơ chỉ phương là \(\overrightarrow {G{K^\prime }} = (1;2;0)\).
Phương trình tham số của đường thẳng GF là \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + {t^\prime }}\\{y = 0,5 + 2{t^\prime }{\rm{ ( }}{{\rm{t}}^\prime }{\rm{ là tham }}}\\{z = 0}\end{array}} \right.\) số).
c) Trực thăng bay vào mây ở độ cao 2 km , tức là vị trí điểm mà trực thăng bắt đầu đi vào đám mây có cao độ \(z = 2\), khi đó \(2t = 2\), suy ra \(t = 1\).
Vậy tọa độ điểm mà trực thăng bắt đầu đi vào đám mây là \((2;2,5;2)\).
d) Ta có \({\rm{H}}(1 + {\rm{t}};0,5 + 2{\rm{t}};2{\rm{t}})\). Khi đó, \(\overrightarrow {HM} = (4 - t;4 - 2t;3 - 2t)\).
Đường thẳng GH có vectơ chỉ phương \(\overrightarrow {GK} = (1;2;2)\).
HM vuông góc với đường bay GH khi \(\overrightarrow {HM} \bot \overrightarrow {GK} \Leftrightarrow \overrightarrow {HM} \cdot \overrightarrow {GK} = 0\)
\( \Leftrightarrow (4 - t) \cdot 1 + (4 - 2t) \cdot 2 + (3 - 2t) \cdot 2 = 0 \Leftrightarrow t = 2.{\rm{ }}\)
Vậy \({\rm{t}} = 2\) thì HM vuông góc với đường bay GH .
Khi đó, khoảng cách từ đỉnh núi đến máy bay trực thăng là:
\(HM = \sqrt {{{(4 - 2)}^2} + {{(4 - 2 \cdot 2)}^2} + {{(3 - 2 \cdot 2)}^2}} = \sqrt 5 (\;{\rm{km}})\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Mặt cầu \((S)\) có phương trình
\({(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\)
nên có tâm \(I(32;50;10)\) và bán kính \(R = \sqrt {109} \).
b) Trong không gian Oxyz, mặt sân có phương trình \(z = 0\) trùng với mặt phẳng tọa độ \((Oxy)\), suy ra hình chiếu vuông góc của điểm \(I(32;50;10)\) xuống mặt sân có toạ độ \(J(32;50;0)\).
c) Trong tam giác vuông IJM, ta có \(IJ = 10,IM = {\rm{R}}\), suy ra
\(JM = \sqrt {I{M^2} - I{J^2}} = \sqrt {109 - 100} = 3.\)
Vậy khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) là 3 m .
Lời giải
a) Mặt cầu \((S)\) có tâm \(I( - 6; - 1;4)\) và bán kính \(R = 2\) nên có phương trình:
\({(x + 6)^2} + {(y + 1)^2} + {(z - 4)^2} = 4.{\rm{ }}\)
b) Ta có \(IM = \sqrt 3 < R\), suy ra điểm \(M\) nằm trong mặt cầu \((S)\) và người đó có thể sử dụng được dịch vụ của trạm nói trên.
c) Ta có \(IN = \sqrt {35} > R\), suy ra điểm \(N\) nằm ngoài mặt cầu \((S)\) và người đó không thể sử dụng được dịch vụ của trạm nói trên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.