Câu hỏi:

18/08/2025 7,953 Lưu

Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ \(O(0;0;0)\), mỗi đơn vị trên trục ứng với 1 km . Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí \(A( - 688; - 185;8)\), chuyển động theo đường thẳng \(d\) có vectơ chỉ phương là \(\vec u = (91;75;0)\) và hướng về đài kiểm soát không lưu (Hình vẽ).

Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ  , mỗi đơn vị trên trục ứng với 1 km (ảnh 1)

a) Xác định tọa độ của vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

b) Xác định tọa độ của vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó.

c) Xác định toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình tham số của đường thẳng d đi qua điểm \({\rm{A}}( - 688\); - 185; 8) và có vectơ chỉ phương \(\vec u = (91;75;0)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x =  - 688 + 91t}\\{y =  - 185 + 75t{\rm{ (t là  tham s?)}}{\rm{. }}}\\{z = 8}\end{array}} \right.\)

Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

Vi B \(B\) d nên B(- 688 + 91t; - 185 + 75t; 8).

\(B\) là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa khi \({\rm{OB}} = 417\), tức là \(\sqrt {{{( - 688 + 91t)}^2} + {{( - 185 + 75t)}^2} + {8^2}}  = 417\)\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)\( \Leftrightarrow t = 3{\rm{ hay }}t = 8.{\rm{ }}\)

\( + {\rm{ Vì }} = 3,{\rm{ ta có  }}B( - 415;40;8){\rm{. }}\)

+ Với \( = 3\), ta có \(B( - 415;40;8)\).

Khi đó \({\rm{AB}} = \sqrt {{{( - 415 + 688)}^2} + {{(40 + 185)}^2}}  \approx 353,77\).

+ Với \({\rm{t}} = 8\), ta có \({\rm{B}}( - 88;415;8)\). Khi đó \(AB = \sqrt {{{( - 88 + 688)}^2} + {{(415 + 185)}^2}}  \approx 848,53\).

Vi \(353,77 < 848,53\) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là \(( - 415;40;8)\).

b) Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi \({\rm{OH}} \bot {\rm{d}}\).

Vi H \( \in \) d nên \(H( - 688 + 91t\) '; - \(185 + 75\) t'; 8).

Ta có \(\overrightarrow {OH}  = ( - 688 + 91t; - 185 + 75t;8)\).

\({\rm{OH}} \bot {\rm{d}} \Leftrightarrow \overrightarrow {OH}  \bot \vec u \Leftrightarrow \overrightarrow {OH}  \cdot \vec u = 0\)

\( \Leftrightarrow ( - 688 + 91t) \cdot 91 + ( - 185 + 75t) \cdot 75 + 8 \cdot 0 = 0\)

\( \Leftrightarrow 13906{{\rm{t}}^\prime } - 76483 = 0 \Leftrightarrow {{\rm{t}}^\prime } = \frac{{11}}{2}\). Suy ra H \(\left( { - \frac{{375}}{2};\frac{{455}}{2};8} \right)\).

Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

\({\rm{OH}} = \sqrt {{{\left( { - \frac{{375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}}  \approx 294,92(\;{\rm{km}}){\rm{. }}\)

c) Từ kết quả ở câu a), ta suy ra toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa là \(( - 88;415;8)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có góc \(\theta \) mà đường bay tạo với phương ngang chính là góc giữa đường thẳng GH và mặt phẳng \(({\rm{Oxy}})\).

Tại thời điểm \({\rm{t}} = 0\) thì \(\overrightarrow {{r_0}}  = (1;0,5;0)\). Trực thăng cất cánh từ điểm \(G\) nên \({\rm{G}}(1;0,5;0)\).

Tại thời điểm \({\rm{t}} = 1\), trực thăng bay đến vị trí K thuộc đường thẳng GH với \({\rm{K}}(2\); 2,5 ; 2 ).

Đường thẳng GH có vectơ chỉ phương \(\overrightarrow {GK}  = (1;2;2)\) và mặt phẳng \(({\rm{Oxy}})\) có vectơ pháp tuyến \(\vec k = (0;0;1)\)

Ta có \(\sin ({\rm{GH}},({\rm{Oxy}})) = \frac{{|1 \cdot 0 + 2 \cdot 0 + 2 \cdot 1|}}{{\sqrt {{1^2} + {2^2} + {2^2}}  \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{2}{3}\).

Suy ra (GH,(Oxy))42°. Vậy θ42°

b) Gọi \({{\rm{K}}^\prime }\) là hình chiếu của điểm K lên mặt phẳng (Oxy). Khi đó K (2; 2,5 ; 0).

Vi F là hình chiếu của điểm H lên mặt phẳng (Oxy) nên \({{\rm{K}}^\prime } \in {\rm{GF}}\).

Do đó đường thẳng GF có vectơ chỉ phương là \(\overrightarrow {G{K^\prime }}  = (1;2;0)\).

Phương trình tham số của đường thẳng GF là \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + {t^\prime }}\\{y = 0,5 + 2{t^\prime }{\rm{ ( }}{{\rm{t}}^\prime }{\rm{ là  tham }}}\\{z = 0}\end{array}} \right.\) số).

c) Trực thăng bay vào mây ở độ cao 2 km , tức là vị trí điểm mà trực thăng bắt đầu đi vào đám mây có cao độ \(z = 2\), khi đó \(2t = 2\), suy ra \(t = 1\).

Vậy tọa độ điểm mà trực thăng bắt đầu đi vào đám mây là \((2;2,5;2)\).

d) Ta có \({\rm{H}}(1 + {\rm{t}};0,5 + 2{\rm{t}};2{\rm{t}})\). Khi đó, \(\overrightarrow {HM}  = (4 - t;4 - 2t;3 - 2t)\).

Đường thẳng GH có vectơ chỉ phương \(\overrightarrow {GK}  = (1;2;2)\).

HM vuông góc với đường bay GH khi \(\overrightarrow {HM}  \bot \overrightarrow {GK}  \Leftrightarrow \overrightarrow {HM}  \cdot \overrightarrow {GK}  = 0\)

\( \Leftrightarrow (4 - t) \cdot 1 + (4 - 2t) \cdot 2 + (3 - 2t) \cdot 2 = 0 \Leftrightarrow t = 2.{\rm{ }}\)

Vậy \({\rm{t}} = 2\) thì HM vuông góc với đường bay GH .

Khi đó, khoảng cách từ đỉnh núi đến máy bay trực thăng là:

\(HM = \sqrt {{{(4 - 2)}^2} + {{(4 - 2 \cdot 2)}^2} + {{(3 - 2 \cdot 2)}^2}}  = \sqrt 5 (\;{\rm{km}})\)

Lời giải

Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng M (ảnh 2)

a) Mặt cầu \((S)\) có phương trình

\({(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\)

nên có tâm \(I(32;50;10)\) và bán kính \(R = \sqrt {109} \).

b) Trong không gian Oxyz, mặt sân có phương trình \(z = 0\) trùng với mặt phẳng tọa độ \((Oxy)\), suy ra hình chiếu vuông góc của điểm \(I(32;50;10)\) xuống mặt sân có toạ độ \(J(32;50;0)\).

c) Trong tam giác vuông IJM, ta có \(IJ = 10,IM = {\rm{R}}\), suy ra

\(JM = \sqrt {I{M^2} - I{J^2}}  = \sqrt {109 - 100}  = 3.\)

Vậy khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) là 3 m .