Câu hỏi:

18/08/2025 347 Lưu

Trong không gian Oxyz (đơn vị của các trục toạ độ là kilômét), một trạm thu phát sóng điện thoại di động có đầu thu phát được đặt tại điềm \(I( - 6; - 1;4)\).

a) Cho biết bán kính phủ sóng của trạm là 2 km . Viết phương trình mặt cầu \((S)\) biểu diễn ranh giới của vùng phủ sóng.

Trong không gian Oxyz (đơn vị của các trục toạ độ là kilômét), một trạm thu phát sóng điện thoại di động có đầu thu phát được đặt tại điềm I(-6; -1; 4) (ảnh 1)

b) Một người sử dụng điện thoại tại điểm \(M( - 5; - 2;5)\). Hãy cho biết điểm \(M\) nằm trong hay nằm ngoài mặt cầu \((S)\) và người đó có thể sử dụng được dịch vụ của trạm nói trên hay không.

c) Câu hỏi tương tự đối với người sử dụng điện thoại ở điểm \(N( - 1;0;1)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Mặt cầu \((S)\) có tâm \(I( - 6; - 1;4)\) và bán kính \(R = 2\) nên có phương trình:

\({(x + 6)^2} + {(y + 1)^2} + {(z - 4)^2} = 4.{\rm{ }}\)

b) Ta có \(IM = \sqrt 3  < R\), suy ra điểm \(M\) nằm trong mặt cầu \((S)\) và người đó có thể sử dụng được dịch vụ của trạm nói trên.

c) Ta có \(IN = \sqrt {35}  > R\), suy ra điểm \(N\) nằm ngoài mặt cầu \((S)\) và người đó không thể sử dụng được dịch vụ của trạm nói trên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình tham số của đường thẳng d đi qua điểm \({\rm{A}}( - 688\); - 185; 8) và có vectơ chỉ phương \(\vec u = (91;75;0)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x =  - 688 + 91t}\\{y =  - 185 + 75t{\rm{ (t là  tham s?)}}{\rm{. }}}\\{z = 8}\end{array}} \right.\)

Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

Vi B \(B\) d nên B(- 688 + 91t; - 185 + 75t; 8).

\(B\) là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa khi \({\rm{OB}} = 417\), tức là \(\sqrt {{{( - 688 + 91t)}^2} + {{( - 185 + 75t)}^2} + {8^2}}  = 417\)\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)\( \Leftrightarrow t = 3{\rm{ hay }}t = 8.{\rm{ }}\)

\( + {\rm{ Vì }} = 3,{\rm{ ta có  }}B( - 415;40;8){\rm{. }}\)

+ Với \( = 3\), ta có \(B( - 415;40;8)\).

Khi đó \({\rm{AB}} = \sqrt {{{( - 415 + 688)}^2} + {{(40 + 185)}^2}}  \approx 353,77\).

+ Với \({\rm{t}} = 8\), ta có \({\rm{B}}( - 88;415;8)\). Khi đó \(AB = \sqrt {{{( - 88 + 688)}^2} + {{(415 + 185)}^2}}  \approx 848,53\).

Vi \(353,77 < 848,53\) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là \(( - 415;40;8)\).

b) Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi \({\rm{OH}} \bot {\rm{d}}\).

Vi H \( \in \) d nên \(H( - 688 + 91t\) '; - \(185 + 75\) t'; 8).

Ta có \(\overrightarrow {OH}  = ( - 688 + 91t; - 185 + 75t;8)\).

\({\rm{OH}} \bot {\rm{d}} \Leftrightarrow \overrightarrow {OH}  \bot \vec u \Leftrightarrow \overrightarrow {OH}  \cdot \vec u = 0\)

\( \Leftrightarrow ( - 688 + 91t) \cdot 91 + ( - 185 + 75t) \cdot 75 + 8 \cdot 0 = 0\)

\( \Leftrightarrow 13906{{\rm{t}}^\prime } - 76483 = 0 \Leftrightarrow {{\rm{t}}^\prime } = \frac{{11}}{2}\). Suy ra H \(\left( { - \frac{{375}}{2};\frac{{455}}{2};8} \right)\).

Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

\({\rm{OH}} = \sqrt {{{\left( { - \frac{{375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}}  \approx 294,92(\;{\rm{km}}){\rm{. }}\)

c) Từ kết quả ở câu a), ta suy ra toạ độ của vị trí mà máy bay ra khỏi màn hình ra đa là \(( - 88;415;8)\).

Lời giải

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sáng trên biển của hải đăng là:

\({(x - 21)^2} + {(y - 35)^2} + {(z - 50)^2} = {4000^2}.\)

b) Ta có: \(IC = \sqrt {{{(42 - 21)}^2} + {{(37 - 35)}^2} + {{(0 - 50)}^2}} \)

\( = \sqrt {2945}  < 4000.{\rm{ }}\)

Vì \(IC < R\) nên điểm \(C\) nằm trong mặt cầu. Vậy người đi biển ở điểm \(C(42;37;0)\) thì có thể nhìn thấy được ánh sáng từ ngọn hải đăng.

c) \({\rm{ Ta có : }}ID = \sqrt {{{(5121 - 21)}^2} + {{(658 - 35)}^2} + {{(0 - 50)}^2}} \)\( = \sqrt {26400629}  > 4000.\)

Vì \(ID > R\) nên điểm \(D\) nằm ngoài mặt cầu. Vậy người đi biển ở điểm \(D(5121;658;0)\) không thể nhìn thấy được ánh sáng từ ngọn hải đăng.

d)

Đường thắng ID đi qua điếm I và nhận \(\overrightarrow {ID}  = (5100;623; - 50)\) làm vectơ chỉ phương.

Phương trình tham số của đường thắng ID là \(\left\{ {\begin{array}{*{20}{l}}{x = 21 + 5100t}\\{y = 35 + 623t}\\{z = 50 - 50t}\end{array}} \right.\) (t là tham số).

Giả sử H là vị trí cuối cùng trên đoạn thắng ID sao cho người đi biến có thế nhìn thấy ánh sáng từ ngọn hái đăng. Khi đó \({\rm{IH}} = {\rm{R}}\).

Ta có \({\rm{H}} \in {\rm{ID}}\) nên gọi tọa độ điếm \({\rm{H}}(21 + 5100{\rm{t}};35 + 623{\rm{t}};50 - 50{\rm{t}})\).

\(\begin{array}{l}\overrightarrow {IH}  = (5100t;623t; - 50t)\\IH = R \Leftrightarrow \sqrt {{{(5100t)}^2} + {{(623t)}^2} + {{( - 50t)}^2}}  = 4000 \Leftrightarrow \sqrt {26400629{t^2}}  = 4000 \Leftrightarrow t \approx  \pm 0,78.\end{array}\)

+ Với \( \approx  \approx 0,78\), ta có \({\rm{H}}(3999;520,94;11),\overrightarrow {IH}  = (3978;485,94; - 39)\).

Khi đó \(\overrightarrow {ID}  = \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) cùng hướng, vậy thóa mãn H thuộc đoạn thắng ID .

+ Với \({\rm{t}} \approx  - 0,78\), ta có \({\rm{H}}( - 3957; - 450,94;89),\overrightarrow {IH}  = ( - 3978; - 485,94;39)\).

Khi đó \(\overrightarrow {ID}  =  - \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) ngược hướng, vậy H không thuộc đoạn thắng ID .

Vậy vị trí cuối cù̀ng trên đoạn thẳng ID sao cho người đi biến còn có thế nhìn thấy được ánh sáng từ ngọn hải đăng là điếm \({\rm{H}}(3999;520,94;11)\).