Cho tứ giác \[ABCD\] nội tiếp đường tròn tâm \(O\) bán kính \[a\]. Biết rằng \[AC \bot BD\]. Khi đó để\[AB + CD\] đạt giá trị lớn nhất thì
A. \[AC = AB\]
B. \[AC = BD\]
C. \[DB = AB\]
D. Không có đáp án đúng.
Câu hỏi trong đề: 39 bài tập Tứ giác nội tiếp có lời giải !!
Quảng cáo
Trả lời:

Chọn B
![Cho tứ giác ABCD nội tiếp đường tròn tâm O bán kính a . Biết rằng AC \bot BD\]. Khi đó để\[AB + CD\] đạt giá trị lớn nhất thì (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid25-1755533050.png)
Vẽ đường kính \(CE\) của đường tròn \(\left( O \right)\).
Ta có \(\widehat {EAC} = 90^\circ \), \(\widehat {EDC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Từ đó ta có \(AE \bot AC\). Mặt khác theo giả thiết \(AC \bot BD\).
Kéo theo \(AE{\rm{ // }}BD\). Vậy \(AEBD\)là hình thang.
Do hình thang \[AEBD\] nội tiếp đường tròn \(\left( O \right)\) nên \(AEDB\) là hình thang cân.
Kéo theo \(AB = DE\) (các cạnh bên của hình thang).
Từ đó ta có \[A{B^2} + C{D^2} = D{E^2} + D{C^2} = E{C^2} = {\left( {2a} \right)^2} = 4{a^2}\] (do \(\Delta EDC\) vuông tại \(D\)).
Áp dụng bất đẳng thức Cauchy cho \(\left( {A{B^2},C{D^2}} \right)\) ta có \(A{B^2} + C{D^2} \ge 2AB.CD\)
\( \Rightarrow 2\left( {A{B^2} + C{D^2}} \right) \ge A{B^2} + C{D^2} + 2AB.CD = {\left( {AB + CD} \right)^2}\).
Kéo theo \({\left( {AB + CD} \right)^2} \le 2{\left( {4a} \right)^2} = 8{a^2}\)\( \Rightarrow AB + CD \le 2\sqrt 2 a\).
Đẳng thức xảy ra khi và chỉ khi\[AB = CD\].
Xét \(\Delta ABI\), \(\Delta DCI\) có \(AB = CD\), \(\widehat {ABD} = \widehat {ACD}\) (góc nội tiếp cùng chắn ),
\(\widehat {BAC} = \widehat {CDB}\) (góc nội tiếp cùng chắn ).
Do đó \(\Delta ABI = \)\(\Delta DCI\) (g.c.g).
Kéo theo \(AI = ID,IB = IC\).
Suy ra \(AC = AI + IC = ID + IB = BD\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[20^\circ .\]
B.
C. \[30^\circ .\]
D. \[40^\circ .\]
Lời giải
Chọn A

Tứ giác \(MNPQ\) nội tiếp \( \Rightarrow \widehat {MQP\,} = \,180^\circ - \,\widehat {MNP} = \,120^\circ \).
(Định lí tổng ba góc trong một tam giác).
Câu 2
A. \[45^\circ \]
B. \[90^\circ \]
C. \[125^\circ \]
D. \[135^\circ \].
Lời giải
Chọn D
Tứ giác \[MNPQ\] có\[\widehat {PMQ} = \widehat {PNQ} = 90^\circ \]\( \Rightarrow \) Tứ giác \[MNPQ\] nội tiếp đường tròn đường kính \(PQ\)
\( \Rightarrow \widehat {MQP}\, + \,\widehat {MNP\,} = 180^\circ \). (1)
\(\Delta MPQ\) vuông tại \(M\) (gt) và \(MP = \,MQ\) (gt) \( \Rightarrow \Delta MPQ\) vuông cân tại \(M \Rightarrow \widehat {MQP}\, = \,45^\circ \). (2)
Từ (1), (2) suy ra: \(\widehat {MNP\,} = \,135^\circ \).
Câu 3
A. \[40^\circ \]
B. \[50^\circ \]
C. \[90^\circ \]
D. \[60^\circ \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[24^\circ .\]
B. \[29^\circ .\]
C. \[30^\circ .\]
D. \[31^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Tứ giác \[ABCD\] là tứ giác nội tiếp.
B. Tứ giác \[ABCD\] không nội tiếp được.
C. Tứ giác \[ABCD\] là một hình thoi.
D. Tứ giác \[ABCD\] là một hình thang cân.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[120^\circ \]
B. \[40^\circ \]
C. \[20^\circ \]
D. \[60^\circ \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.