Câu hỏi:

25/08/2025 6 Lưu

Cho hình chóp tứ giác đều S.ABCD có độ dài tất cả các cạnh đều bằng a.

a) Tứ giác ABCD là hình vuông.

b) Tam giác SBD cân tại S.

c) \(\left( {\overrightarrow {SB} ,\overrightarrow {BD} } \right) = 45^\circ \).

d) \(\overrightarrow {SB} .\overrightarrow {BD}  =  - {a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp tứ giác đều S.ABCD có độ dài tất cả các cạnh đều bằng a.  a) Tứ giác ABCD là hình vuông. (ảnh 1)

a) Do S.ABCD là hình chóp đều nên ABCD là hình vuông.

b) Do S.ABCD là hình chóp đều tất cả các cạnh bằng a Þ SB = SD = a.

c) Do tứ giác ABCD là hình vuông có độ dài cạnh bằng a nên độ dài đường chéo \(BD = a\sqrt 2 \).

Tam giác SBD có SB = SD = a và \(BD = a\sqrt 2 \) nên tam giác SBD vuông cân tại S, suy ra \(\widehat {SBD} = 45^\circ \).

Vậy \(\left( {\overrightarrow {SB} ,\overrightarrow {BD} } \right) = 180^\circ  - \widehat {SBD} = 135^\circ \).

d) Ta có \(\overrightarrow {SB} .\overrightarrow {BD}  = \left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {BD} } \right|.\cos \left( {\overrightarrow {SB} ,\overrightarrow {BD} } \right) = a.a\sqrt 2 .\cos 135^\circ  =  - {a^2}\).

Đáp án: a) Đúng;  b) Đúng;  c) Sai;  d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cho hình lăng trụ ABC.A'B'C'. Gọi M là trung điểm của BB'. Trong các khẳng định sau, khẳng định nào đúng? (ảnh 1)

Vì M là trung điểm của BB' nên ta có:

\(2\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AB'}  = \overrightarrow {AB}  + \overrightarrow {AA'}  + \overrightarrow {A'B'}  = 2\overrightarrow {AB}  + \overrightarrow {AA'} \) \( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AA'} \).

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 1, AD = 2, AA' = 3. Gọi M là một điểm trên đoạn CC' sao cho CM = 2MC'.  a) \(\overrightarrow {AA'}  = \frac{3}{2}\overrightarrow {CM} \). (ảnh 1)

a) Ta có \(\overrightarrow {AA'} \) cùng phương với \(\overrightarrow {CM} \) và \(AA' = \frac{3}{2}CM\), suy ra \(\overrightarrow {AA'}  = \frac{3}{2}\overrightarrow {CM} \).

b) Do \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {A'C'} \), suy ra \(\left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AM} ,\overrightarrow {AC} } \right) = \widehat {CAM}\),

suy ra \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \cos \widehat {CAM} = \frac{{AC}}{{AM}} = \frac{{\sqrt 5 }}{3}\).

c) Ta có \(\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {CM}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \frac{2}{3}\overrightarrow {AA'} \).

d) Ta có \(\overrightarrow {B'D}  = \overrightarrow {AD}  - \overrightarrow {AB'}  = \overrightarrow {AD}  - \left( {\overrightarrow {AB}  + \overrightarrow {AA'} } \right) =  - \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AA'} \).

Do đó \(\overrightarrow {AM} .\overrightarrow {B'D}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \frac{2}{3}\overrightarrow {AA'} } \right).\left( { - \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AA'} } \right)\)

\( =  - A{B^2} + A{D^2} - \frac{2}{3}A{A'^2} =  - 1 + 4 - 6 =  - 3\).

Đáp án: a) Đúng;  b) Sai;  c) Sai;  d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP