Cho tứ diện đều \[ABCD\] có cạnh bằng \[4\]. Tính giá trị tích vô hướng \[\overrightarrow {AB} \left( {\overrightarrow {AB} - \overrightarrow {CA} } \right)\].
Quảng cáo
Trả lời:
Ta có:
\[\overrightarrow {AB} \left( {\overrightarrow {AB} - \overrightarrow {CA} } \right) = \overrightarrow {AB} .\overrightarrow {AB} + \overrightarrow {AB} .\overrightarrow {AC} = {\overrightarrow {AB} ^2} + \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\]
\[ = A{B^2} + AB.AC.\cos \left( {\widehat {BAC}} \right) = {4^2} + 4.4.\cos 60^\circ = {4^2} + \frac{{{4^2}}}{2} = \frac{{{{3.4}^2}}}{2} = 24\].
Trả lời: 24.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì BC2 = SB2 + SC2 nên DSBC vuông cân tại S.
Mặt khác SA = AC = SC = 2 Þ DSAC là tam giác đều.
Ta có \(\overrightarrow {SC} .\overrightarrow {AB} = \overrightarrow {SC} .\left( {\overrightarrow {SB} - \overrightarrow {SA} } \right) = \overrightarrow {SC} .\overrightarrow {SB} - \overrightarrow {SC} .\overrightarrow {SA} \)\( = 0 - \left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {SA} } \right|.\cos \widehat {ASC} = - 2.2.\cos 60^\circ = \frac{{ - {2^2}}}{2} = - 2\).
Vậy \(\overrightarrow {SC} .\overrightarrow {AB} = - 2\).
Trả lời: −2.
Lời giải
a) Do S.ABCD là hình chóp đều nên ABCD là hình vuông.
b) Do S.ABCD là hình chóp đều tất cả các cạnh bằng a Þ SB = SD = a.
c) Do tứ giác ABCD là hình vuông có độ dài cạnh bằng a nên độ dài đường chéo \(BD = a\sqrt 2 \).
Tam giác SBD có SB = SD = a và \(BD = a\sqrt 2 \) nên tam giác SBD vuông cân tại S, suy ra \(\widehat {SBD} = 45^\circ \).
Vậy \(\left( {\overrightarrow {SB} ,\overrightarrow {BD} } \right) = 180^\circ - \widehat {SBD} = 135^\circ \).
d) Ta có \(\overrightarrow {SB} .\overrightarrow {BD} = \left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {BD} } \right|.\cos \left( {\overrightarrow {SB} ,\overrightarrow {BD} } \right) = a.a\sqrt 2 .\cos 135^\circ = - {a^2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \).
B. \(\overrightarrow {SA} - \overrightarrow {SB} + \overrightarrow {SC} - \overrightarrow {SD} = \overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\overrightarrow {AD} \, + \,\overrightarrow {BC} \].
B. \[\overrightarrow {DA} \, + \,\overrightarrow {CB} \] .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.