Câu hỏi:

25/08/2025 11 Lưu

Cho các điểm A(1; −1; 0), B(0; 2; 0), C(2; 1; 3) và M là điểm thỏa mãn hệ thức \(\overrightarrow {MA}  - \overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow 0 \). Khi đó điểm M có tọa độ là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\overrightarrow {MA}  - \overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {BA}  + \overrightarrow {MC}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MC}  = \overrightarrow {AB} \). Gọi M(x; y; z)

Ta có \(\overrightarrow {AB}  = \left( { - 1;3;0} \right)\), \(\overrightarrow {MC}  = \left( {2 - x;1 - y;3 - z} \right)\).

Vì \(\overrightarrow {MC}  = \overrightarrow {AB} \) nên \(\left\{ \begin{array}{l}2 - x =  - 1\\1 - y = 3\\3 - z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y =  - 2\\z = 3\end{array} \right.\) Þ M(3; −2; 3).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi M(a; 0; 0) (a > 0) là điểm thuộc tia Ox.

Ta có \(\overrightarrow {AM}  = \left( {a - 1; - 2;0} \right),\overrightarrow {BM}  = \left( {a + 1;0; - 3} \right)\).

Để tam giác ABM vuông tại M thì \(\overrightarrow {AM} .\overrightarrow {BM}  = 0\)\( \Leftrightarrow \left( {a - 1} \right)\left( {a + 1} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a =  - 1\end{array} \right.\).

Vì a > 0 nên M(1; 0; 0).

Lời giải

Theo đề ta có \(\overrightarrow {MN}  = 2\overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {a - 800} \right)\\100 = 2\left( {b - 500} \right)\\10 = 2\left( {c - 30} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 900\\b = 550\\c = 35\end{array} \right.\).

Do đó a + b + c = 1485.

Trả lời: 1485.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP