Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(600; 400; 20) đến điểm N(800; 500; 30) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tốc độ của máy bay sau 15 phút tiếp theo là P(a; b; c). Tính a + b + c.
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(600; 400; 20) đến điểm N(800; 500; 30) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tốc độ của máy bay sau 15 phút tiếp theo là P(a; b; c). Tính a + b + c.
Quảng cáo
Trả lời:

Theo đề ta có \(\overrightarrow {MN} = 2\overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {a - 800} \right)\\100 = 2\left( {b - 500} \right)\\10 = 2\left( {c - 30} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 900\\b = 550\\c = 35\end{array} \right.\).
Do đó a + b + c = 1485.
Trả lời: 1485.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi M(a; 0; 0) (a > 0) là điểm thuộc tia Ox.
Ta có \(\overrightarrow {AM} = \left( {a - 1; - 2;0} \right),\overrightarrow {BM} = \left( {a + 1;0; - 3} \right)\).
Để tam giác ABM vuông tại M thì \(\overrightarrow {AM} .\overrightarrow {BM} = 0\)\( \Leftrightarrow \left( {a - 1} \right)\left( {a + 1} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - 1\end{array} \right.\).
Vì a > 0 nên M(1; 0; 0).
Lời giải
\(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {BA} + \overrightarrow {MC} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MC} = \overrightarrow {AB} \). Gọi M(x; y; z)
Ta có \(\overrightarrow {AB} = \left( { - 1;3;0} \right)\), \(\overrightarrow {MC} = \left( {2 - x;1 - y;3 - z} \right)\).
Vì \(\overrightarrow {MC} = \overrightarrow {AB} \) nên \(\left\{ \begin{array}{l}2 - x = - 1\\1 - y = 3\\3 - z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - 2\\z = 3\end{array} \right.\) Þ M(3; −2; 3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.