Cho hình chóp \(S.ABC\). Trên cạnh \(SA\), lấy điểm \(M\) sao cho \(SM = 2AM\). Trên cạnh \(BC\), lấy điểm \(N\) sao cho \(CN = 2BN\). Khi đó \(\overrightarrow {MN} = \frac{a}{b}\overrightarrow {AB} + \frac{c}{b}\overrightarrow {SC} \) với \(\,\frac{a}{b},\frac{c}{b}\) là các phân số tối giản. Tổng \(a + b + c\) bằng bao nhiêu?
Cho hình chóp \(S.ABC\). Trên cạnh \(SA\), lấy điểm \(M\) sao cho \(SM = 2AM\). Trên cạnh \(BC\), lấy điểm \(N\) sao cho \(CN = 2BN\). Khi đó \(\overrightarrow {MN} = \frac{a}{b}\overrightarrow {AB} + \frac{c}{b}\overrightarrow {SC} \) với \(\,\frac{a}{b},\frac{c}{b}\) là các phân số tối giản. Tổng \(a + b + c\) bằng bao nhiêu?

Quảng cáo
Trả lời:

Lời giải
Ta có \[\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} \Rightarrow 2\overrightarrow {MN} = 2\overrightarrow {MA} + 2\overrightarrow {AB} + 2\overrightarrow {BN} \].
Lại có \[\overrightarrow {MN} = \overrightarrow {MS} + \overrightarrow {SC} + \overrightarrow {CN} \].
Suy ra \(3\overrightarrow {MN} = \left( {2\overrightarrow {MA} + \overrightarrow {MS} } \right) + \left( {2\overrightarrow {BN} + \overrightarrow {CN} } \right) + 2\overrightarrow {AB} + \overrightarrow {SC} = 2\overrightarrow {AB} + \overrightarrow {SC} \).
Khi đó, \[\overrightarrow {MN} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {SC} \Rightarrow a = 2,b = 3,\,c = 1 \Rightarrow a + b + c = 6\].
Đáp án: 6.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(y = \frac{{ - x + 2}}{{x - 1}}\).
Lời giải
Lời giải
Dựa vào bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là \(x = 1\) và đường tiệm cận ngang là \(y = 1\). Suy ra loại A, C.
Xét câu B, \(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\forall x \ne 1\).
Xét câu D, \(y' = \frac{2}{{{{\left( {x - 1} \right)}^2}}} > 0,\,\forall x \ne 1\).
Chọn B.
Câu 2
Lời giải
Lời giải
Ta có \(\vec u = \overrightarrow {A'C'} - \overrightarrow {A'A} = \overrightarrow {AC'} \).
Suy ra \(\left| {\vec u} \right| = \left| {\overrightarrow {AC'} } \right| = AC' = \sqrt {A{{A'}^2} + A{B^2} + A{D^2}} = \sqrt {{2^2} + {2^2} + {2^2}} = 2\sqrt 3 \). Chọn D.
Câu 3
A. \(\left( { - 1;\;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.