Câu hỏi:

26/08/2025 27 Lưu

PHẦN II. TỰ LUẬN

Một người đang ở tại điểm \(A\) trên sa mạc. Ông ta muốn đến điểm \(B\) và cách \(A\) một đoạn là \(70\)km. Trong sa mạc thì xe ông ta chỉ có thể di chuyển với vận tốc \(30\) km/h. Ông ấy phải đến được điểm \(B\) trong 2 giờ. Biết rằng có một con đường nhựa \(HK\) song song với \(AB\) và cách\(AB\) một đoạn \(10\) km. Trên đường nhựa này thì xe ông ấy có thể di chuyển với vận tốc \(50\) km/h . Để đến \(B\) sớm nhất (đảm bảo trong khung giờ cho phép) thì ông phải đi theo con đường nào?

Để đến \(B\) sớm nhất (đảm bảo trong khung giờ cho phép) thì ông phải đi theo con đường nào? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Để đến \(B\) sớm nhất (đảm bảo trong khung giờ cho phép) thì ông phải đi theo con đường nào? (ảnh 2)

Thời gian nếu đi trực tiếp từ A đến B trên sa mạc là \(\frac{{70}}{{30}} = \frac{7}{3} > 2\).

Do đó, nhà địa chất học không thể đến đúng thời gian quy định.

Vì vậy cần thiết phải chia quãng đường đi được thành 3 giai đoạn: \(A \to C \to D \to B\).

Đặt \(HC = x\,\,\left( {0 < x < 70} \right);DK = y\,\,\left( {0 < y < 70} \right)\).

Thời gian đi từ \(A \to C\) là \(\frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}}\).

Thời gian đi từ \(C \to D\) là \(\frac{{70 - \left( {x + y} \right)}}{{50}}\).

Thời gian đi từ \(D \to B\) là \(\frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}}\).

Tổng thời gian đi từ \(A \to B\) theo cách này là:

 \(\frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}} + \frac{{70 - \left( {x + y} \right)}}{{50}} + \frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}} = \frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}} + \frac{{35 - x}}{{50}} + \frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}} + \frac{{35 - y}}{{50}} = f\left( x \right) + f\left( y \right)\).

Xét \(f\left( u \right) = \frac{{\sqrt {{{10}^2} + {u^2}} }}{{30}} + \frac{{35 - u}}{{50}}\), \(0 < u < 70\).

Ta có \(f'\left( u \right) = \frac{u}{{30\sqrt {{{10}^2} + {u^2}} }} - \frac{1}{{50}};f'\left( u \right) = 0 \Rightarrow u = \frac{{15}}{2}\).

Lập bảng biến thiên ta được \(\mathop {\min }\limits_{u \in \left( {0;70} \right)} f\left( u \right) = f\left( {\frac{{15}}{2}} \right) = \frac{{29}}{{30}}\).

Khi đó \(f\left( x \right) + f\left( y \right) \ge \frac{{29}}{{30}} + \frac{{29}}{{30}} = \frac{{29}}{{15}} \approx 1,93\).

Dấu “=” xảy ra khi \(x = y = \frac{{15}}{2}\).

Vậy để đến B sớm nhất thì ông ta phải đi trên đoạn AC một khoảng 12,5 km, đoạn CD một khoảng 45 km và đi trên đoạn DB một khoảng 12,5 km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Dựa vào bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là \(x = 1\) và đường tiệm cận ngang là \(y = 1\). Suy ra loại A, C.

Xét câu B, \(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\forall x \ne 1\).

Xét câu D, \(y' = \frac{2}{{{{\left( {x - 1} \right)}^2}}} > 0,\,\forall x \ne 1\).

Chọn B.

Lời giải

Lời giải

Ta có \(\vec u = \overrightarrow {A'C'}  - \overrightarrow {A'A}  = \overrightarrow {AC'} \).

Suy ra \(\left| {\vec u} \right| = \left| {\overrightarrow {AC'} } \right| = AC' = \sqrt {A{{A'}^2} + A{B^2} + A{D^2}}  = \sqrt {{2^2} + {2^2} + {2^2}}  = 2\sqrt 3 \). Chọn D.

Câu 3

A. \(\left( { - 1;\;3} \right)\). 

B. \(\left( {1;\;0} \right)\). 
C. \(\left( {1;\; - 1} \right)\).                
D. \(\left( {0;\;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y =  - 1\).                         

B. \(x = \frac{1}{3}\).      
C. \(y =  - \frac{1}{3}\).    
D. \(x =  - \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).

a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).

b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\). 

c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).

d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP