Câu hỏi:

26/08/2025 23 Lưu

Bác Minh gửi vào ngân hàng \(120\) triệu đồng theo thể thức lãi kép theo định kì với lãi suất \(x\) mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức \(S = 120{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Minh nhận được sau ba năm. Khai triển biểu thức \(S\) thành đa thức theo \(x\) ta được:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Ta có: \(S = 120\left( {{x^3} + 3{x^2} + 3x + 1} \right) = 120{x^3} + 360{x^2} + 360x + 120.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Đáp án đúng là: B

Ta có: \({m^3} + 9{m^2}n + 27m{n^2} + 27{n^3} = {m^3} + 3 \cdot {m^2} \cdot 3n + 3 \cdot m \cdot {\left( {3n} \right)^2} + {\left( {3n} \right)^3} = {\left( {m + 3n} \right)^3}.\)

Do đó, đa thức \({m^3} + 9{m^2}n + 27m{n^2} + 27{n^3}\) được viết dưới dạng \({\left( {m + 3n} \right)^3}.\)

Lời giải

Lời giải

Đáp án đúng là: B

Ta có: \({\left( {a - \frac{1}{3}} \right)^3} = {a^3} - 3 \cdot {a^2} \cdot \frac{1}{3} + 3 \cdot a \cdot {\left( {\frac{1}{3}} \right)^2} - {\left( {\frac{1}{3}} \right)^3} = {a^3} - {a^2} + \frac{1}{3}a - \frac{1}{{27}}\).

Do đó, khai triển \({\left( {a - \frac{1}{3}} \right)^3}\) ta được một đa thức có \(4\) hạng tử.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP