Câu hỏi:

04/09/2025 6 Lưu

Mệnh đề nào dưới đây đúng?     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(y = \cos x\) là hàm số chẵn.

Các hàm số \(y = \sin x\), \(y = \tan x\), \(y = \cot x\) là các hàm số lẻ. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

VVVVVVV (ảnh 1)

Gọi \(I,J\) lần lượt là giao điểm của \(MN\) với \(AB\)\(AD\). Gọi \(Q\) là giao điểm của \(SB\)\(IP\); gọi \(R\) là giao điểm của \(SD\)\(JP\).

Khi đó, thiết diện của hình chóp \(S.ABCD\) và mặt phẳng \(\left( {MNP} \right)\) là ngũ giác \(MNRPQ\).

Đáp án: \(5\).

Lời giải

Để độ sâu của mực nước là \(15{\rm{\;m}}\) thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1 \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = - \frac{6}{\pi } + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

Do \(0 \le t < 24{\rm{ n\^e n }}0 \le - \frac{6}{\pi } + 12k < 24\)\( \Leftrightarrow \frac{6}{\pi } \le 12k < 24 + \frac{6}{\pi } \Leftrightarrow \frac{1}{{2\pi }} \le k < 2 + \frac{1}{{2\pi }}\).

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {1\,;2} \right\}\).

Với \[k = 1\] thì \(t = - \frac{6}{\pi } + 12 \cdot 1 \approx 10,09\) (giờ);

Với \[k = 2\] thì \(t = - \frac{6}{\pi } + 12 \cdot 2 \approx 22,09\) (giờ).

Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP