Câu hỏi:

04/09/2025 10 Lưu

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = \frac{3}{2}\), công sai \(d = \frac{1}{2}\).

a) Công thức cho số hạng tổng quát \({u_n} = 1 + \frac{n}{3}\).

b) 5 là số hạng thứ 8 của cấp số cộng đã cho.

c) \(\frac{{15}}{4}\) một số hạng của cấp số cộng đã cho.

d) Tổng 100 số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) bằng \(2620\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right) \cdot \frac{1}{2} = 1 + \frac{n}{2}\) với mọi \(n \ge 1\).

b) Đúng. Xét \(5 = 1 + \frac{n}{2} \Rightarrow n = 8 \in {\mathbb{N}^*}\); suy ra 5 là số hạng thứ 8 của cấp số cộng đã cho.

c) Sai. Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin {\mathbb{N}^*};\) suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.

d) Sai. Tổng 100 số hạng đầu của cấp số cộng là: \({S_{100}} = \frac{{100\left[ {2 \cdot \frac{3}{2} + \left( {100 - 1} \right) \cdot \frac{1}{2}} \right]}}{2} = 2625.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \( - \frac{\pi }{4} = \frac{{7\pi }}{4} - 2\pi \). Chọn B.

Lời giải

Từ đề bài ta suy ra được mỗi tháng bạn Vân trích ra \(4 \cdot 30\% = 1,2\) triệu đồng để gửi tiết kiệm.

Tháng 9/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{24}} = 1,2{\left( {1 + 0,004} \right)^{24}}\).

Tháng 10/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{23}} = 1,2{\left( {1 + 0,004} \right)^{23}}\).

Tháng 8/2025 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \[{u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\].

Số tiền bạn Vân nhận được khi gửi tiết kiệm như thế tạo thành một cấp số nhân với số hạng đầu \({u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\) và công bội \(q = 1,004\).

Vậy tổng số tiền bạn Vân nhận được chính là tổng 24 số hạng đầu của một cấp số nhân ở trên.

\({S_{24}} = \frac{{{u_1}\left( {1 - {q^{24}}} \right)}}{{1 - q}} = \frac{{1,2048\left( {1 - 1,{{004}^{24}}} \right)}}{{1 - 1,004}} \approx 30,285148\) (triệu đồng).

Vậy số tiền bạn Vân nhận được đến hết tháng 8/2025 là 30 285 148 đồng.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP