Bạn Hà thả quả bóng cao su từ độ cao \(10\)m theo phương thẳng đứng. Mỗi khi chạm đất nó lại nảy lên theo phương thẳng đứng có độ cao bằng \(\frac{3}{4}\) độ cao trước đó. Tổng quãng đường bóng đi được đến khi bóng dừng hẳn bằng bao nhiêu mét?
Bạn Hà thả quả bóng cao su từ độ cao \(10\)m theo phương thẳng đứng. Mỗi khi chạm đất nó lại nảy lên theo phương thẳng đứng có độ cao bằng \(\frac{3}{4}\) độ cao trước đó. Tổng quãng đường bóng đi được đến khi bóng dừng hẳn bằng bao nhiêu mét?
Quảng cáo
Trả lời:

Cách 1.
Gọi độ cao của quả bóng nảy lên lần thứ nhất là \({u_1}\). Ta có \({u_1} = \frac{3}{4} \cdot 10 = \frac{{15}}{2}\) (m).
Theo bài ra, ta có độ cao của quả bóng trong các lần nảy tiếp theo lần lượt là:
\({u_2} = \frac{3}{4}{u_1};\,{u_3} = \frac{3}{4}{u_2};\,...;\,{u_n} = \frac{3}{4}{u_{n - 1}};\,...\).
Như vậy, độ cao mỗi lần nảy lên của quả bóng tạo thành một cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{{15}}{2}\) và công bội \(q = \frac{3}{4}\).
Khi đó, tổng quãng đường bóng đi được đến khi bóng dừng hẳn là:
\(S = 10 + 2{u_1} + 2{u_2} + ... + 2{u_n} + ....\)\( = 10 + 2\left( {{u_1} + {u_2} + ... + {u_n} + ...} \right)\)\( = 10 + 2 \cdot \frac{{{u_1}}}{{1 - q}} = 10 + 2 \cdot \frac{{\frac{{15}}{2}}}{{1 - \frac{3}{4}}} = 70\) (m).
Cách 2.
Mỗi quãng đường khi bóng đi xuống tạo thành một cấp số nhân lùi vô hạn có \({u_1} = 10\) và \(q = \frac{3}{4}\).
Tổng các quãng đường khi bóng đi xuống là \(S = \frac{{{u_1}}}{{1 - q}}\)\( = \frac{{10}}{{1 - \frac{3}{4}}}\) \( = 40\) (m).
Tổng quãng đường bóng đi được đến khi bóng dừng hẳn \(2S - 10 = 70\) (m).
Đáp án: 70.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \( - \frac{\pi }{4} = \frac{{7\pi }}{4} - 2\pi \). Chọn B.
Lời giải
a) Sai. Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right) \cdot \frac{1}{2} = 1 + \frac{n}{2}\) với mọi \(n \ge 1\).
b) Đúng. Xét \(5 = 1 + \frac{n}{2} \Rightarrow n = 8 \in {\mathbb{N}^*}\); suy ra 5 là số hạng thứ 8 của cấp số cộng đã cho.
c) Sai. Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin {\mathbb{N}^*};\) suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.
d) Sai. Tổng 100 số hạng đầu của cấp số cộng là: \({S_{100}} = \frac{{100\left[ {2 \cdot \frac{3}{2} + \left( {100 - 1} \right) \cdot \frac{1}{2}} \right]}}{2} = 2625.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.