Câu hỏi:

04/09/2025 35 Lưu

PHẦN II. TỰ LUẬN

Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hoá bởi hàm số \(h\left( t \right) = 90{\rm{cos}}\left( {\frac{\pi }{3}t} \right)\), trong đó \(h\left( t \right)\) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây \(\left( {t \ge 0} \right)\). Tìm tất cả các thời điểm trong khoảng 9 giây đầu tiên để chiều cao của sóng đạt 45 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(h\left( t \right) = 45 \Rightarrow 90\cos \left( {\frac{\pi }{3}t} \right) = 45 \Leftrightarrow \cos \left( {\frac{\pi }{3}t} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{3}t = \frac{\pi }{3} + k2\pi \\\frac{\pi }{3}t = - \frac{\pi }{3} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}t = 1 + 6k\\t = - 1 + 6k\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

\(0 \le t \le 9 \Rightarrow \left[ \begin{array}{l}0 \le 1 + 6k \le 9\\0 \le - 1 + 6k \le 9\end{array} \right. \Rightarrow \left[ \begin{array}{l} - \frac{1}{6} \le k \le \frac{4}{3} \Rightarrow \left[ \begin{array}{r}k = 0 \Rightarrow t = 1\,{\rm{s}}\\k = 1 \Rightarrow t = 7\,{\rm{s}}\end{array} \right.\\\frac{1}{6} \le k \le \frac{5}{3} \Rightarrow k = 1 \Rightarrow t = 5\,{\rm{s}}\end{array} \right.\) (do \(k \in \mathbb{Z}\)).

Vậy \[t = 1\,{\rm{s}}\], \[t = 5\,{\rm{s}}\], \[t = 7\,{\rm{s}}\] là các thời điểm cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{{3\pi }}{4}\].     
B. \[ - \frac{\pi }{4}\].       
C. \[\frac{\pi }{4}\].                                     
D. \[ - \frac{{3\pi }}{4}\].

Lời giải

Ta có \( - \frac{\pi }{4} = \frac{{7\pi }}{4} - 2\pi \). Chọn B.

Lời giải

a) Sai. Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right) \cdot \frac{1}{2} = 1 + \frac{n}{2}\) với mọi \(n \ge 1\).

b) Đúng. Xét \(5 = 1 + \frac{n}{2} \Rightarrow n = 8 \in {\mathbb{N}^*}\); suy ra 5 là số hạng thứ 8 của cấp số cộng đã cho.

c) Sai. Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin {\mathbb{N}^*};\) suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.

d) Sai. Tổng 100 số hạng đầu của cấp số cộng là: \({S_{100}} = \frac{{100\left[ {2 \cdot \frac{3}{2} + \left( {100 - 1} \right) \cdot \frac{1}{2}} \right]}}{2} = 2625.\)

Câu 3

A. \[1\].                              
B. \[3\].                              
C. \[2\].                                       
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{1}{2};\frac{1}{4};\frac{1}{8}.\)                 
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}.\)                      
C. \(\frac{1}{2};\frac{1}{4};\frac{1}{{16}}.\)                      
D. \(\frac{1}{2};\frac{2}{3};\frac{3}{4}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P = \frac{1}{2}.\)       
B. \(P = \frac{1}{4}.\)       
C. \(P = \frac{1}{6}.\)                          
D. \(P = \frac{1}{8}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\mathbb{R}\backslash \left\{ {k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                  
B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                                
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                                
D. \(\mathbb{R}\backslash \left\{ {k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP