Câu hỏi:

13/09/2025 33 Lưu

Hai tàu du lịch xuất phát từ hai thành phố cảng \(A\) và \(B\) cách nhau \(200\,\,{\rm{(km)}}\) đến đảo \(C\) như hình minh họa.
Media VietJack

Biết CAB^=30°;  CBA^=45°. Tàu 1 ở thành phố \(A\) khởi hành lúc 8 giờ và chuyển động đều với vận tốc \[80\,\,{\rm{(km/h)}}\]. Tàu 2 ở thành phố \(B\) muốn đến đảo \(C\) cùng lúc với tàu 1 thì phải khởi hành lúc \(a\) giờ \(b\) phút (làm tròn đến đơn vị phút), biết tàu 2 chuyển động đều cùng vận tốc \(80\,{\rm{(km/h)}}.\) Tính \(a + b.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính được BAC^=180°30°45°=105°.

Áp dụng định lý sin vào tam giác ABC, ta có:

ABsinC=BCsinA=ACsinB200sin105°=BCsin30°=ACsin45°AC=200sin45°sin105°BC=200sin30°sin105°.

Thời gian tàu 1 chạy từ thành phố A đến đảo C là tA=AC80=200sin45°80sin105°(giờ).

Thời gian tàu 2 chạy từ thành phố B đến đảo C là tB=BC80=200sin30°80sin105°(giờ).

Ta có tAtB0,536 (giờ) 32 (phút).

Khi đó, thời điểm xuất phát của tàu 2 là: 8 giờ 32 phút.

Vậy a=8,b=32. Suy ra a+b=8+32=40.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số học sinh giải được cả 3 bài toán.

       a là số học sinh chỉ làm được bài toán thứ nhất và thứ ba.

       b là số học sinh chỉ làm được bài toán thứ nhất và thứ hai.

Khi đó:

       Số học sinh chỉ làm được bài toán thứ ba là: 15 – a – x – 3 = 12 – x – a (học sinh).

       Số học sinh chỉ làm được bài toán thứ hai là: 14 – b – x – 3 = 11 – x – b (học sinh).

Theo đề ta có phương trình: x + a + b + 3 + 12 + 12 – x – a + 11 – x – b = 35. Do đó x = 3.

Vậy có 3 học sinh giải được cả 3 bài toán.

Lời giải

Gọi số bộ sản phẩm loại \[I\] sản xuất trong một ngày là \[x\,\,,\,\,\,\left( {x \ge 0,x \in \mathbb{N}} \right)\].

Số bộ sản phẩm loại \[II\] sản xuất trong một ngày là \[y\,\,,\,\,\,\left( {y \ge 0,y \in \mathbb{N}} \right)\].

Số lãi thu được là \[L = 5x + 4y\] (triệu đồng).

Số giờ làm việc của máy là \[3x + 3y\] (giờ).

Số giờ làm việc của công nhân là \[2x + y\] (giờ).

Theo giả thiết: Một ngày máy làm việc không quá \[15\] giờ, nhân công làm việc không quá \[8\] giờ nên ta có hệ bất phương trình \[\left\{ \begin{array}{l}3x + 3y \le 15\\2x + y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\].

Miền nghiệm của hệ bất phương trình trên là

Một xưởng sản xuất đồ gỗ mỹ nghệ sản suất ra hai bộ sản phẩm loại I và loại II (ảnh 1)

Tính các giá trị của biểu thức \[L = 5x + 4y\] tại các đỉnh của tứ giác là miền nghiệm của hệ bất phương trình trên ta được

\[\left( {x;y} \right) = \left( {0;0} \right) \Rightarrow L = 0\];

\[\left( {x;y} \right) = \left( {4;0} \right) \Rightarrow L = 20\];

\[\left( {x;y} \right) = \left( {3;2} \right) \Rightarrow L = 23\];

\[\left( {x;y} \right) = \left( {0;5} \right) \Rightarrow L = 20\].

Vậy số tiền lãi lớn nhất xưởng đó đạt được trong một ngày là \[23\] triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP