Câu hỏi:

13/09/2025 24 Lưu

Một xưởng sản xuất đồ gỗ mỹ nghệ sản suất ra hai bộ sản phẩm loại \[I\] và loại \[II\]. Mỗi bộ sản phẩm loại \[I\] lãi \[5\] triệu đồng, mỗi bộ sản phẩm loại \[II\] lãi \[4\] triệu đồng. Để sản suất mỗi bộ sản phẩm loại \[I\] cần máy làm việc trong \[3\] giờ và nhân công làm việc trong \[2\] giờ. Để sản suất mỗi bộ sản phẩm loại \[II\] cần máy làm việc trong \[3\] giờ và nhân công làm việc trong \[1\] giờ. Biết rằng chỉ dùng máy hoặc chỉ dùng nhân công không thể đồng thời làm hai loại sản phẩm cùng lúc, số nhân công luôn ổn định. Một ngày máy làm việc không quá \[15\]giờ, nhân công làm việc không quá \[8\] giờ. Tính số tiền lãi lớn nhất xưởng đó đạt được trong một ngày nếu bán hết toàn bộ sản phẩm làm ra.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số bộ sản phẩm loại \[I\] sản xuất trong một ngày là \[x\,\,,\,\,\,\left( {x \ge 0,x \in \mathbb{N}} \right)\].

Số bộ sản phẩm loại \[II\] sản xuất trong một ngày là \[y\,\,,\,\,\,\left( {y \ge 0,y \in \mathbb{N}} \right)\].

Số lãi thu được là \[L = 5x + 4y\] (triệu đồng).

Số giờ làm việc của máy là \[3x + 3y\] (giờ).

Số giờ làm việc của công nhân là \[2x + y\] (giờ).

Theo giả thiết: Một ngày máy làm việc không quá \[15\] giờ, nhân công làm việc không quá \[8\] giờ nên ta có hệ bất phương trình \[\left\{ \begin{array}{l}3x + 3y \le 15\\2x + y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\].

Miền nghiệm của hệ bất phương trình trên là

Một xưởng sản xuất đồ gỗ mỹ nghệ sản suất ra hai bộ sản phẩm loại I và loại II (ảnh 1)

Tính các giá trị của biểu thức \[L = 5x + 4y\] tại các đỉnh của tứ giác là miền nghiệm của hệ bất phương trình trên ta được

\[\left( {x;y} \right) = \left( {0;0} \right) \Rightarrow L = 0\];

\[\left( {x;y} \right) = \left( {4;0} \right) \Rightarrow L = 20\];

\[\left( {x;y} \right) = \left( {3;2} \right) \Rightarrow L = 23\];

\[\left( {x;y} \right) = \left( {0;5} \right) \Rightarrow L = 20\].

Vậy số tiền lãi lớn nhất xưởng đó đạt được trong một ngày là \[23\] triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số học sinh giải được cả 3 bài toán.

       a là số học sinh chỉ làm được bài toán thứ nhất và thứ ba.

       b là số học sinh chỉ làm được bài toán thứ nhất và thứ hai.

Khi đó:

       Số học sinh chỉ làm được bài toán thứ ba là: 15 – a – x – 3 = 12 – x – a (học sinh).

       Số học sinh chỉ làm được bài toán thứ hai là: 14 – b – x – 3 = 11 – x – b (học sinh).

Theo đề ta có phương trình: x + a + b + 3 + 12 + 12 – x – a + 11 – x – b = 35. Do đó x = 3.

Vậy có 3 học sinh giải được cả 3 bài toán.

Lời giải

Tính được BAC^=180°30°45°=105°.

Áp dụng định lý sin vào tam giác ABC, ta có:

ABsinC=BCsinA=ACsinB200sin105°=BCsin30°=ACsin45°AC=200sin45°sin105°BC=200sin30°sin105°.

Thời gian tàu 1 chạy từ thành phố A đến đảo C là tA=AC80=200sin45°80sin105°(giờ).

Thời gian tàu 2 chạy từ thành phố B đến đảo C là tB=BC80=200sin30°80sin105°(giờ).

Ta có tAtB0,536 (giờ) 32 (phút).

Khi đó, thời điểm xuất phát của tàu 2 là: 8 giờ 32 phút.

Vậy a=8,b=32. Suy ra a+b=8+32=40.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP