Cho hai tập hợp \(X,Y\) thỏa mãn \(X\backslash Y = \left\{ {7;15} \right\}\) và \(X \cap Y = \left( { - 1;2} \right)\). Xác định số phần tử là số nguyên của tập hợp \(X\).
Quảng cáo
Trả lời:


Ta có \(X = \left( {X\backslash Y} \right) \cup \left( {X \cap Y} \right) = \left\{ {7;\,15} \right\} \cup \left( { - 1;2} \right)\).
Khi đó, các số nguyên thuộc tập \(X\) là \(0;1;7;15\).
Vậy số phần tử là số nguyên của \(X\) là 4.
Đáp án: 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(2{n^3} + {n^2} + 7n + 1 = \left( {{n^2} + n + 4} \right)\left( {2n - 1} \right) + 5\).
\(2{n^3} + {n^2} + 7n + 1\) chia hết cho \(2n - 1\) \( \Leftrightarrow \)\(5\) chia hết cho \(2n - 1\)\( \Leftrightarrow \left[ \begin{array}{l}2n - 1 = 1\\2n - 1 = - 1\\2n - 1 = 5\\2n - 1 = - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}n = 1\\n = 0\\n = 3\\n = - 2\end{array} \right.\).
Vậy có 4 giá trị nguyên của \(n\).
Đáp án: \(4\).
Lời giải
Gọi \[x\] là số mét vải loại A, \[y\] là số mét vải loại B mà người thợ sản suất.
Theo đề ta suy ra hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 6\\x + 2y \le 8\end{array} \right.\) (1).
Số tiền lợi nhuận là: \[L\left( {x;y} \right) = 0,8x + y\] (triệu đồng).
+ Biểu diễn miền nghiệm của hệ (1) lên mặt phẳng tọa độ \[Oxy\] là miền tứ giác \[OABC\] (kể cả biên) với \[O\left( {0;0} \right),A\left( {0;4} \right),B\left( {4;2} \right),C\left( {6;0} \right).\]

+ Xét \[L\left( {x;y} \right)\] tại các đỉnh của tứ giác \[OABC\], ta có:
\[L\left( {0;0} \right) = 0\] (triệu đồng)
\[L\left( {0;4} \right) = 4\] (triệu đồng)
\[L\left( {4;2} \right) = 5,2\] (triệu đồng)
\[L\left( {6;0} \right) = 4,8\] (triệu đồng).
+ Ta thấy \[L\] đạt giá trị lớn nhất là \[5,2\] (triệu đồng) tại \[x = 4\] và \[y = 2.\]
Vậy người thợ cần sản xuất 4 mét loại A và 2 mét loại B thì thu lại lợi cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.