Câu hỏi:

16/09/2025 6 Lưu

Một tam giác có độ dài ba cạnh là 52, 56, 60. Gọi \(R,r\) lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác. Khi đó \(R \cdot r\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[p = \frac{{a + b + c}}{2} = \frac{{52 + 56 + 60}}{2} = 84\].

\[S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {84\left( {84 - 52} \right)\left( {84 - 56} \right)\left( {84 - 60} \right)}  = 1344\].

Khi đó \[r = \frac{S}{p} = 16;\,\,R = \frac{{abc}}{{4S}} = \frac{{52 \cdot 56 \cdot 60}}{{4 \cdot 1344}} = \frac{{65}}{2}\].

Ta có \(R \cdot r = \frac{{65}}{2} \cdot 16 = 520\).

Đáp án: 520.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\tan \alpha  = 1 \Rightarrow \cos \alpha  \ne 0\). Chia cả tử và mẫu của B cho \({\cos ^2}\alpha \) ta được:

B=sin2α+11cos2α2cos2αsin2α1cos2α=tan2α+1cos2α2tan2α=tan2α+tan2α+12tan2α=3.

Đáp án: 3.

Lời giải

Ta có các mệnh đề là

b) Số \[15\] là số nguyên tố.

c) Tổng các góc của một tam giác là 1800

d) \[3\] là số nguyên dương.

Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP