Câu hỏi:

18/09/2025 7 Lưu

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN

A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho mệnh đề  là số lẻ”, mệnh đề phủ định của mệnh đề \[A\] là:

A.  là số lẻ”.

B.  là số chẵn”.

C.  là số lẻ”. 
D.  là số chẵn”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có phủ định của mệnh đề \[A\] là  là số chẵn”. Chọn B.\(A \subset B.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng \(d:y = ax + b\). Theo hình vẽ, \(d\) đi qua hai điểm \(\left( {0;2} \right)\) và \(\left( {2;0} \right)\) nên ta có hệ phương trình  \(\left\{ \begin{array}{l}a \cdot 0 + b = 2\\a \cdot 2 + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b = 2\end{array} \right.\).

Suy ra \(d:y =  - x + 2 \Leftrightarrow x + y = 2\).

Do gốc tọa độ \(O\left( {0;0} \right)\) không thuộc miền nghiệm của bất phương trình nên bất phương trình cần tìm là \(x + y \ge 2\). Suy ra ta có \(m = 1,n = 2\). Vậy \(S = 3 \cdot 1 + 2 = 5\).

Đáp án: \(5\).

Lời giải

Gọi x là số học sinh giải được cả 3 bài toán.

       a là số học sinh chỉ làm được bài toán thứ nhất và thứ ba.

       b là số học sinh chỉ làm được bài toán thứ nhất và thứ hai.

Khi đó:

       Số học sinh chỉ làm được bài toán thứ ba là: 15 – a – x – 3 = 12 – x – a (học sinh).

       Số học sinh chỉ làm được bài toán thứ hai là: 14 – b – x – 3 = 11 – x – b (học sinh).

Theo đề ta có phương trình: x + a + b + 3 + 12 + 12 – x – a + 11 – x – b = 35. Do đó x = 3.

Vậy có 3 học sinh giải được cả 3 bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left\{ \begin{array}{l}x + y > 1\\2x - y < 2\end{array} \right..\)  

B. \(\left\{ \begin{array}{l}{x^2} + y > 1\\2x - y < 2\end{array} \right..\)   
C. \(\left\{ \begin{array}{l}x + y > 1\\2{x^2} - y < 2\end{array} \right..\)  
D. \(\left\{ \begin{array}{l}x + {y^2} > 1\\2x - y < 2\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP