Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là \(3,2\,{\rm{m}}\). Tại vị trí trên cổng vòm hoa có độ cao \(2\,{\rm{m}}\) so với mặt đất người ta thả một sợi dây chạm đất cách chân \(A\) của cổng vòm hoa một đoạn \(1\,{\rm{m}}\) (như hình vẽ). Tính chiều cao của cổng vòm hoa.
Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là \(3,2\,{\rm{m}}\). Tại vị trí trên cổng vòm hoa có độ cao \(2\,{\rm{m}}\) so với mặt đất người ta thả một sợi dây chạm đất cách chân \(A\) của cổng vòm hoa một đoạn \(1\,{\rm{m}}\) (như hình vẽ). Tính chiều cao của cổng vòm hoa.

Quảng cáo
Trả lời:

Chọn hệ trục tọa độ \(Oxy\) như hình vẽ.

Khi đó đường parabol \(\left( P \right)\) có phương trình dạng \(y = a{x^2} + bx + c\) \(\left( {a \ne 0} \right)\) sẽ đi qua ba điểm có tọa độ là \(\left( { - 1,6;0} \right)\), \(\left( {1,6;0} \right)\) và \(\left( { - 0,6;2} \right)\).
Ta có hệ phương trình \(\left\{ \begin{array}{l}0 = a \cdot {\left( { - 1,6} \right)^2} + b \cdot \left( { - 1,6} \right) + c\\0 = a \cdot {\left( {1,6} \right)^2} + b \cdot 1,6 + c\\2 = a \cdot {\left( { - 0,6} \right)^2} + b \cdot \left( { - 0,6} \right) + c\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{{10}}{{11}}\\b = 0\\c = \frac{{128}}{{55}}\end{array} \right.\).
Suy ra phương trình đường parabol \(\left( P \right)\) là \(y = - \frac{{10}}{{11}}{x^2} + \frac{{128}}{{55}}\).
Giao điểm của \(\left( P \right)\) với trục \(Oy\) là đỉnh \(I\left( {0;\frac{{128}}{{55}}} \right)\).
Vậy chiều cao của cái cổng là \(OI = \frac{{128}}{{55}} \approx 2,33\,\,\left( {\rm{m}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(A \cup B = \left[ { - 5;\,2} \right)\), tập hợp này chứa các số nguyên âm là \( - 5\); \( - 4\); \( - 3\); \( - 2\); \( - 1\). Chọn D.
Lời giải
a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).
b) Sai. Theo câu a), ta có điều kiện của \(x\) là \(x \ge 3,x \in \mathbb{N}\).
c) Đúng. Với \(x = 7\) thì \(T = 900\,000 + 700\,000 \cdot 7 = 5\,800\,000\) (đồng).
d) Sai. Xét bất phương trình
\[900\,000 + 700\,000x \le 10\,000\,000 \Leftrightarrow 9 + 7x \le 100 \Leftrightarrow x \le \frac{{91}}{7} = 13.\]
Vậy với khoản tiền 10 triệu đồng, anh Bình có thể thuê một chiếc xe tối đa 13 ngày.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.