Câu hỏi:

20/09/2025 49 Lưu

Cho tứ giác \(ABCD,\) gọi \(E\) là giao điểm của các tia phân giác các góc \(C,\;D\) của tứ giác \(ABCD.\) Khi đó, \(...\widehat {CED} = \widehat A + \widehat B.\) Số thích hợp điền vào dấu “…” là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(2\)

Cho tứ giác \(ABCD,\) gọi \(E\) là giao điểm của các tia phân giác các góc \(C,\;D\) của tứ giác \(ABCD.\) Khi đó, \(...\widehat {CED} = \widehat A + \widehat B.\) Số thích hợp điền vào dấu “…” là bao nhiêu? (ảnh 1)

Vì \(CE\) là tia phân giác của \(\widehat {BCD}\) nên \(\widehat {ECD} = \frac{1}{2}\widehat {BCD}.\)

Vì \(DE\) là tia phân giác của \(\widehat {ADC}\) nên \(\widehat {EDC} = \frac{1}{2}\widehat {ADC}.\)

Tam giác \(CDE\) có: \(\widehat {CED} + \widehat {CDE} + \widehat {ECD} = 180^\circ \) (tổng ba góc của một tam giác).

Nên \(\widehat {CED} = 180^\circ  - \left( {\widehat {CDE} + \widehat {ECD}} \right) = 180^\circ  - \frac{1}{2}\left( {\widehat {BCD} + \widehat {ADC}} \right) = 180^\circ  - \frac{1}{2}\left[ {360^\circ  - \left( {\widehat A + \widehat B} \right)} \right] = \frac{1}{2}\left( {\widehat A + \widehat B} \right).\)

Do đó, \(2\widehat {CED} = \widehat A + \widehat B.\) Vậy số thích hợp điền vào dấu “…” là \(2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat C = 50^\circ .\)

B. \(\widehat C = 60^\circ .\)  
C. \(\widehat C = 70^\circ .\)   
D. \(\widehat C = 40^\circ .\)

Lời giải

Đáp án đúng là: A

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]

Do đó, \[\widehat C = 360^\circ  - \widehat A - \widehat B - \widehat D = 360^\circ  - 80^\circ  - 120^\circ  - 110^\circ  = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]

Lời giải

Cho tứ giác \(ABCD,\) gọi \(O\) là giao điểm của hai đường chéo.  a) \(O\) là giao điểm của \(AB\) và \(CD.\)  b) \(OA + OB > AB.\)  c) \(OC + OD = CD.\)  d) \(AC + BD = AB + CD.\) (ảnh 1)

a) Sai.

Tứ giác \(ABCD\) có hai đường chéo là \(AC\)\(BD.\) Do đó, \(O\) là giao điểm của \(AC\)\(BD.\)

b) Đúng.

Áp dụng bất đẳng thức vào tam giác \(AOB\) ta có: \(OA + OB > AB.\)

c) Sai.

Áp dụng bất đẳng thức vào tam giác \(COD\) ta có: \(OC + OD > CD.\)

d) Sai.

Ta có: \(OA + OB > AB,\;OC + OD > CD\) nên:

\(OA + OB + OC + OD > AB + CD\)

\(\left( {OA + OC} \right) + \left( {OB + OD} \right) > AB + CD\)

\(AC + BD > AB + CD.\)

Câu 6

A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.   

B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau. 

C. \(\widehat A\) và \(\widehat B\) là hai góc đối nhau.  
D. \(\widehat A\) và \(\widehat D\) là hai góc đối nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP