Phần I. Trắc nghiệm nhiều phương án lựa chọn
((Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Trong các hình dưới đây, có hình nào là hình chữ nhật?
Phần I. Trắc nghiệm nhiều phương án lựa chọn
((Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)

Quảng cáo
Trả lời:

Đáp án đúng là: B
Hình chữ nhật là hình 2
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AC = BD.\)
b) Sai.
Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = 90^\circ \) hay \(\widehat {DAO} + \widehat {OAB} = 90^\circ .\)
Theo đề bài: \(\widehat {DAO} = 2\widehat {OAB}\) nên \(\widehat {OAB} + 2\widehat {OAB} = 90^\circ .\) Suy ra \(3\widehat {OAB} = 90^\circ ,\) nên \(\widehat {OAB} = 30^\circ .\)
c) Sai.
Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OC = OD.\) Do đó, tam giác \(COD\) cân tại \(O.\)
Do đó, \(OH\) là đường cao đồng thời là đường trung tuyến của \(\Delta COD.\) Suy ra \(HC = \frac{1}{2}DC.\)
d) Đúng.
Vì \(\widehat {OAB} = 30^\circ \) nên \(\widehat {DAO} = 2\widehat {OAB} = 2 \cdot 30^\circ = 60^\circ .\)
Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OD.\) Do đó, tam giác \(AOD\) cân tại \(O.\)
Mà \(\widehat {OAD} = 60^\circ \) nên tam giác \(AOD\) là tam giác đều.
Lời giải

a) Đúng.
Vì \(G\) là giao điểm của hai đường trung tuyến \(BM,\;CN\) của \(\Delta ABC\) nên \(G\) là trọng tâm của \(\Delta ABC.\)
b) Sai.
Vì tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)
Vì \(M\) là trung điểm của \(AC\) nên \(AM = MC = \frac{1}{2}AC.\)
Vì \(N\) là trung điểm của \(AB\) nên \(AN = NB = \frac{1}{2}AB.\)
Do đó, \(AN = NB = AM = MC.\)
Tam giác \(BMC\) và tam giác \(CNB\) có: \(\widehat {MCB} = \widehat {NBC}\;\left( {cmt} \right),\;MC = BN\;\left( {cmt} \right),\;BC\;{\rm{chung}}{\rm{.}}\)
Do đó, \(\Delta BMC = \Delta CNB\;\left( {c - g - c} \right).\)
c) Đúng.
Vì \(\Delta BMC = \Delta CNB\;\left( {cmt} \right)\) nên \(BM = CN.\)
Vì \(G\) là trọng tâm của \(\Delta ABC\) nên \(GC = \frac{2}{3}CN,\;BG = \frac{2}{3}BM.\) Suy ra: \(GB = GC.\)
Mà \(GD = GB,\;GE = GC\) nên \(GD = GB = GE = GC.\) Suy ra: \(EG + GC = BG + GD\) hay \(BD = CE.\)
d) Đúng.
Tứ giác \(BEDC\) có hai đường chéo \(CE,\;BD\) cắt nhau tại \(G;\;\) \(G\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(EC.\) Do đó, tứ giác \(BEDC\) là hình bình hành. Mà \(BD = CE\) nên tứ giác \(BEDC\) là hình chữ nhật. Do đó, \(\widehat {EBC} = 90^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.