Câu hỏi:

19/09/2025 8 Lưu

Chọn đáp án đúng:

A. Hình thang có hai góc vuông là hình chữ nhật. 

B. Hình thang có hai đường chéo bằng nhau là hình chữ nhật.  

C. Hình thang cân có một góc vuông là hình chữ nhật. 

D. Cả A, B, C đều đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Hình thang cân có một góc vuông là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(5\)

Vì chu vi hình chữ nhật \(ABCD\) bằng \(14\;{\rm{cm}}\) nên \(2\left( {DC + AD} \right) = 14\;{\rm{cm}}\) nên \(AD + DC = 7\;{\rm{cm}}{\rm{.}}\)

Vì chu vi tam giác \(ACD\) bằng \(12\;{\rm{cm}}\) nên \(DC + AD + AC = 12\;\left( {{\rm{cm}}} \right).\)

Do đó, \(7 + AC = 12\) hay \(AC = 5\;{\rm{cm}}{\rm{.}}\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(BD = AC = 5\;{\rm{cm}}{\rm{.}}\) Vậy \(BD = 5\;{\rm{cm}}{\rm{.}}\)

Lời giải

Cho hình chữ nhật \(ABCD\) hai đường chéo cắt nhau tại \(O.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(AB,\;BC.\)  a) \(\widehat {OMB} = \widehat {ONB} = 90^\circ .\) (ảnh 1)

a) Đúng.

Tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OB = OC = OD = \frac{1}{2}AC = \frac{1}{2}BD.\)

Do đó, tam giác \(AOB\) cân tại \(O\) và tam giác \(COB\) cân tại \(O.\)

Tam giác \(AOB\) cân tại \(O\) nên \(OM\) là đường trung tuyến đồng thời là đường cao của tam giác đó. Do đó, \(\widehat {OMB} = 90^\circ .\)

Tam giác \(COB\) cân tại \(O\) nên \(ON\) là đường trung tuyến đồng thời là đường cao của tam giác đó. Do đó, \(\widehat {ONB} = 90^\circ .\)

b) Đúng.

Tứ giác \(OMBN\) có: \(\widehat {MBN} = \widehat {OMB} = \widehat {ONB} = 90^\circ .\) Do đó, tứ giác \(OMBN\) là hình chữ nhật.

c) Sai.

Vì tứ giác \(OMBN\) là hình chữ nhật nên \(MN = OB.\) Mà \(OB = \frac{1}{2}AC\) nên \(MN = \frac{1}{2}AC.\)

d) Đúng.

Gọi \(K\) là giao điểm của \(OB\) và \(MN.\) Vì tứ giác \(OMBN\) là hình chữ nhật nên \(KM = KB.\)

Do đó, tam giác \(KMB\) cân tại \(K.\) Do đó, \(\widehat {KMB} = \widehat {KBM}.\)

Vì tam giác \(AOB\) cân tại \(O\) nên \(\widehat {OAB} = \widehat {OBA}.\) Do đó, \(\widehat {OAB} = \widehat {KMB}.\)

Mà hai góc này ở vị trí đồng vị nên \(MN\,{\rm{//}}\,AC.\)