Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một số sản phẩm của một số thí sinh ở bảng sau
Thời gian (phút)
5
6
7
8
25
Số học sinh
2
5
6
3
1
Giá trị ngoại lệ của mẫu số liệu trên là
Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một số sản phẩm của một số thí sinh ở bảng sau
Thời gian (phút) |
5 |
6 |
7 |
8 |
25 |
Số học sinh |
2 |
5 |
6 |
3 |
1 |
Giá trị ngoại lệ của mẫu số liệu trên là
Quảng cáo
Trả lời:

Mẫu số liệu có 17 học sinh.
Do đó \({Q_1} = \frac{{6 + 6}}{2} = 6;{Q_3} = \frac{{7 + 8}}{2} = 7,5\). Suy ra \({\Delta _Q} = 7,5 - 6 = 1,5\).
Có \({Q_1} - 1,5{\Delta _Q} = 6 - 1,5.1,5 = 3,75\); \({Q_2} + 1,5{\Delta _Q} = 7,5 + 1,5.1,5 = 9,75\).
Do đó giá trị ngoại lệ của mẫu số liệu trên là 25. Chọn D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x;y\)(chiếc) là số lượng bánh nướng, bánh dẻo mà xí nghiệp cần sản xuất (\(x,y \in \mathbb{N}\)).
Khối lượng bột mỳ cần dùng là \(0,12x + 0,16y\) (kg).
Khối lượng đường cần dùng là \(0,06x + 0,04y\) (kg).
Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\y \le 3x\\3x + 4y \le 15000\\3x + 2y \le 12000\end{array} \right.\).
Số tiền lãi thu được là \(T = 8x + 6y\) (nghìn đồng).
Bài toán trở thành tìm giá trị lớn nhất của \(T = 8x + 6y\) trên miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\y \le 3x\\3x + 4y \le 15000\\3x + 2y \le 12000\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền tứ giác OABC kể cả cạnh (phần không gạch) với \(O\left( {0;0} \right),A\left( {4000;0} \right),B\left( {3000;1500} \right),C\left( {1000;3000} \right)\).
Với \(O\left( {0;0} \right)\) thì \(T = 0\).
Với \(A\left( {4000;0} \right)\) thì \(T = 32000\).
Với \(B\left( {3000;1500} \right)\) thì \(T = 33000\).
Với \(O\left( {1000;3000} \right)\) thì \(T = 26000\).
Do đó để đạt được tiền lãi cao nhất thì xí nghiệp nên sản xuất 3000 chiếc bánh nướng và 1500 chiếc bánh dẻo.
Lời giải
Ta có MC = 3, NC = 1 \( \Rightarrow MN = \sqrt {10} \).
Ta có BM = 3; AB = 4 \( \Rightarrow AM = 5\).
AD = 6; ND = 3 \( \Rightarrow AN = 3\sqrt 5 \).
Ta có \(p = \frac{{AM + AN + MN}}{2} = \frac{{\sqrt {10} + 5 + 3\sqrt 5 }}{2}\).
Khi đó \({S_{AMN}} = \sqrt {p\left( {p - AM} \right)\left( {p - AN} \right)\left( {p - MN} \right)} = \frac{{15}}{2}\).
Bán kính của đường tròn ngoại tiếp của tam giác AMN là \(R = \frac{{AM.AN.MN}}{{4{S_{AMN}}}} = \frac{{5\sqrt 2 }}{2}\).
Câu 3
A. \(S = \frac{1}{2}bc\sin A\).
B. \(\cos A = \frac{{{b^2} - {c^2} - {a^2}}}{{2bc}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\sin \alpha \) và \(\cot \alpha \) cùng dấu.
B. Tích \(\sin \alpha .\cot \alpha \)mang dấu âm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.