Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một số sản phẩm của một số thí sinh ở bảng sau
Thời gian (phút)
5
6
7
8
25
Số học sinh
2
5
6
3
1
Giá trị ngoại lệ của mẫu số liệu trên là
Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một số sản phẩm của một số thí sinh ở bảng sau
Thời gian (phút) |
5 |
6 |
7 |
8 |
25 |
Số học sinh |
2 |
5 |
6 |
3 |
1 |
Giá trị ngoại lệ của mẫu số liệu trên là
Quảng cáo
Trả lời:

Mẫu số liệu có 17 học sinh.
Do đó \({Q_1} = \frac{{6 + 6}}{2} = 6;{Q_3} = \frac{{7 + 8}}{2} = 7,5\). Suy ra \({\Delta _Q} = 7,5 - 6 = 1,5\).
Có \({Q_1} - 1,5{\Delta _Q} = 6 - 1,5.1,5 = 3,75\); \({Q_2} + 1,5{\Delta _Q} = 7,5 + 1,5.1,5 = 9,75\).
Do đó giá trị ngoại lệ của mẫu số liệu trên là 25. Chọn D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(2{x^2} - 75x - 77 = 0\) \( \Leftrightarrow x = - 1\) hoặc \(x = \frac{{77}}{2}\). Vì \(x \in \mathbb{Z}\) nên \(x = - 1\). Suy ra \(A = \left\{ { - 1} \right\}\).
Vậy tập hợp A chỉ có 1 phần tử.
Trả lời: 1.
Lời giải
Theo quy tắc hình bình hành ta có \(\overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow F \).
Khi diễn viên xiếc đạt trạng thái cân bằng trên dây, ta có \(\overrightarrow {{T_1}} + \overrightarrow {{T_2}} + \overrightarrow P = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow F = - \overrightarrow P \) và \(\left| {\overrightarrow F } \right| = \left| { - \overrightarrow P } \right| = 700\) (N).
Ta có góc tạo bởi \(\overrightarrow {{T_1}} \) và \(\overrightarrow {{T_2}} \) bằng 140° \( \Rightarrow \widehat {CDA} = 180^\circ - 140^\circ = 40^\circ \).
Dây không giãn nên \(\left| {\overrightarrow {{T_1}} } \right| = \left| {\overrightarrow {{T_2}} } \right|\).
Xét \(\Delta ADC\) có \({F^2} = T_1^2 + T_2^2 - 2{T_1}{T_2}\cos \widehat {CDA}\)\( \Leftrightarrow {F^2} = 2T_1^2\left( {1 - \cos 40^\circ } \right)\)
\( \Rightarrow {T_1} = \sqrt {\frac{{{F^2}}}{{2\left( {1 - \cos 40^\circ } \right)}}} = \sqrt {\frac{{{{700}^2}}}{{2\left( {1 - \cos 40^\circ } \right)}}} \approx 1023\) N.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.