Trong không gian tọa độ \[Oxyz\], cho các vectơ \(\vec a = \left( {2{\mkern 1mu} ;{\mkern 1mu} m - 1{\mkern 1mu} ;{\mkern 1mu} 3} \right)\), \(\vec b = \left( {1{\mkern 1mu} ;{\mkern 1mu} 3{\mkern 1mu} ;{\mkern 1mu} - 2n} \right)\). Tìm \(m\), \(n\) để các vectơ \(\vec a\), \(\vec b\) cùng phương.
A. \(m = 7\); \(n = - \frac{3}{4}\).
Quảng cáo
Trả lời:

Các vectơ \(\overrightarrow {a\,} \), \(\overrightarrow {b\,} \) cùng phương khi và chỉ khi tồn tại số thực dương \(k\) sao cho \(\overrightarrow {a\,} = k\overrightarrow {b\,} \)
\( \Leftrightarrow \left\{ \begin{array}{l}2 = k\\m - 1 = 3k\\3 = k\left( { - 2n} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 = k\\m - 1 = 6\\3 = 2\left( { - 2n} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 = k\\m = 7\\n = \frac{{ - 3}}{4}\end{array} \right.\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta đặt \[A(a;0;0)\],\[B(0;b;0)\],\[C(0;0;c)\].
\[\overrightarrow {SA} = (a - 1; - 2; - 3)\]; \[\overrightarrow {SB} = ( - 1;b - 2; - 3)\]; \[\overrightarrow {SC} = ( - 1; - 2;c - 3)\].
Vì \(SA\), \(SB\), \(SC\) đôi một vuông góc nên
\[\left\{ \begin{array}{l}\overrightarrow {SA} \bot \overrightarrow {SB} \\\overrightarrow {SB} \bot \overrightarrow {SC} \\\overrightarrow {SA} \bot \overrightarrow {SC} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {SB} = 0\\\overrightarrow {SB} .\overrightarrow {SC} = 0\\\overrightarrow {SA} .\overrightarrow {SC} = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a + 2b = 14\\2b + 3c = 14\\a + 3c = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 7\\b = \frac{7}{2}\\c = \frac{7}{3}\end{array} \right.\].
Do \(SA\), \(SB\), \(SC\) đôi một vuông góc, nên: \({V_{SABC}} = \frac{1}{6}SA.SB.SC = \frac{1}{6}.7.\frac{7}{2}.\frac{7}{3} = \frac{{343}}{{36}}\).
a) Sai.
b) Đúng.
c) Sai.
d) Đúng.
Lời giải
Ta có: Điểm đối xứng của \(B\left( { - 4;\,8;\,6} \right)\) qua mặt phẳng \[\left( {Oxy} \right)\] là \(B'\left( { - 4;\,8;\, - 6} \right)\)
\( \Rightarrow \overrightarrow {AB'} \left( { - 5;\,5;\, - 10} \right)\).
Khi đó với mọi điểm \(M\)thuộc mặt phẳng \[\left( {Oxy} \right)\] thì:\(MB = MB' \Rightarrow MA + MB = MA + MB' \ge AB'\)
Dấu bằng xảy ra khi ba điểm \(A,\,M,B'\) thẳng hàng và điểm \(M\) nằm giữa hai điểm \(A,B'\).
\( \Leftrightarrow \overrightarrow {AM} = k.\overrightarrow {AB'} \,\,\,\left( {0 \le k \le 1} \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}a - 1 = k.\left( { - 5} \right)\\b - 3 = k.\left( 5 \right)\\0 - 4 = k.\left( { - 10} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 5\\k = \frac{2}{5}\end{array} \right.\)
Vậy có: \(2024a + 2025b = 2024.\left( { - 1} \right) + 2025.\left( 5 \right) = 8101\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.