Trong không gian \[Oxyz\], cho các vec tơ \[\overrightarrow a = \left( {5;3; - 2} \right)\] và \[\overrightarrow b = \left( {m; - 1;m + 3} \right)\]. Có bao nhiêu giá trị nguyên dương của \[m\] để góc giữa hai vec tơ \[\overrightarrow a \] và \[\overrightarrow b \] là góc tù?
Quảng cáo
Trả lời:

Ta có \[\cos \left( {\overrightarrow a ;{\rm{ }}\overrightarrow b } \right) = \frac{{\overrightarrow a .{\rm{ }}\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{3m - 9}}{{\sqrt {38} .\sqrt {2{m^2} + 6m + 10} }}\].
Góc giữa hai vec tơ \[\overrightarrow a \] và \[\overrightarrow b \] là góc tù khi và chỉ khi \[\cos \left( {\overrightarrow a ;{\rm{ }}\overrightarrow b } \right) < 0 \Leftrightarrow 3m - 9 < 0 \Leftrightarrow m < 3\].
Vì \[m\] nguyên dương nên \[m \in \left\{ {1;{\rm{ }}2} \right\}\]. Vậy có 2 giá trị \[m\] thỏa mãn yêu cầu bài toán.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
a) Sai.
Tọa độ trọng tâm của tam giác \[ABC\]là \[G\left( {2;\,\frac{2}{3};\,\frac{8}{3}} \right)\].
b) Đúng
Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 1;2; - 3} \right)\\\overrightarrow {BC} = \left( { - 7; - 5; - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}AB = \sqrt {14} \\BC = \sqrt {75} = 5\sqrt 3 \end{array} \right.\]
c) Đúng
Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 1;2; - 3} \right)\\\overrightarrow {BC} = \left( { - 7; - 5; - 1} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} .\overrightarrow {BC} = 0 \Rightarrow \] tam giác \[ABC\] vuông tại \[B\].
d) Đúng
Vì tam giác \[ABC\] vuông tại \[B\].
\[ \Rightarrow \] tâm \[I\] của đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm của cạnh huyền \[AC\].
\[ \Rightarrow \]\[I\left( {1; - \frac{1}{2};3} \right)\]. Vậy \[a + 2b + c = 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Trong không gian với hệ trục tọa độ \(Oxyz\), cho \[\vec a = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \]và với m và n là hai số thực.
a) Vec tơ \[\vec a\] có tọa độ là
b) Khi \[m = 1,n = 0\] thì tọa độ của vec tơ
c) Khi \[m = 1,n = 0\] thì tọa độ vec tơ
d) Khi \[m = 1,n = 0\] thì tọa độ vec tơ
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Trong không gian với hệ trục tọa độ \(Oxyz\), cho \[\vec a = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \]và với m và n là hai số thực.
a) Vec tơ \[\vec a\] có tọa độ là
b) Khi \[m = 1,n = 0\] thì tọa độ của vec tơ
c) Khi \[m = 1,n = 0\] thì tọa độ vec tơ
d) Khi \[m = 1,n = 0\] thì tọa độ vec tơ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.