Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 10 m, chiều rộng là 6m và chiều cao là 4 m. Một chiếc quạt được treo trên trần nhà sao cho là điểm chính giữa của phòng học. Xét hệ trục tọa độ \(Oxyz\)có gốc (\(O \equiv A\)) trùng với một góc phòng và mặt phẳng (\(Oxy\)) trùng với mặt sàn, đơn vị đo được lấy theo mét . Gọi \[I(a;b;c)\]là tọa độ của điểm treo quạt. Tính giá trị \(a + b + c\)?

Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 10 m, chiều rộng là 6m và chiều cao là 4 m. Một chiếc quạt được treo trên trần nhà sao cho là điểm chính giữa của phòng học. Xét hệ trục tọa độ \(Oxyz\)có gốc (\(O \equiv A\)) trùng với một góc phòng và mặt phẳng (\(Oxy\)) trùng với mặt sàn, đơn vị đo được lấy theo mét . Gọi \[I(a;b;c)\]là tọa độ của điểm treo quạt. Tính giá trị \(a + b + c\)?

Quảng cáo
Trả lời:
Ta có \(C'(6;10;4)\), \(A'(0;0;4)\).
Gọi \(I\left( {x;y;z} \right)\) là trung điểm của \(A'C'\)
Do đó \(\left\{ \begin{array}{l}{x_I} = \frac{{6 + 0}}{2} = 3\\{y_I} = \frac{{10 + 0}}{2} = 5\\{z_I} = \frac{{4 + 4}}{2} = 4\end{array} \right.\)
Vậy tọa độ của điểm treo quạt \(I(3;5;4)\)suy ra \(a + b + c = 12\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[\left( {\overrightarrow u ,\overrightarrow v } \right) = 45^\circ \Leftrightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\sqrt 2 }}{2}\] \[ \Leftrightarrow \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{\sqrt 2 }}{2}\]\( \Leftrightarrow \frac{{1 - 2m}}{{\sqrt 6 .\sqrt {1 + {m^2}} }} = \frac{1}{{\sqrt 2 }}\) \( \Leftrightarrow \sqrt {3\left( {{m^2} + 1} \right)} = 1 - 2m\) \( \Leftrightarrow \left\{ \begin{array}{l}1 - 2m \ge 0\\3{m^2} + 3 = 1 - 4m + 4{m^2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m \le \frac{1}{2}\\{m^2} - 4m - 2 = 0\end{array} \right.\) \( \Leftrightarrow m = 2 - \sqrt 6 \approx - 0.4494897\).
Suy ra \(m \approx - 0.4\)
Lời giải
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
a) Với \(m = 1;n = 2\) thì \(\overrightarrow b = \left( { - 1; - 8;3} \right)\) nên a) sai.
b) Với \(m = 1;n = 0\) thì \(\overrightarrow b = \left( {1;4; - 1} \right)\) nên \(2\overrightarrow a - \overrightarrow b = \left( {1; - 12;7} \right)\) nên b) đúng.
c) Để \(\vec b = \vec 0\) thì \(\left\{ \begin{array}{l}m - n = 0\\4m - 6n = 0\\{n^2} - 3m + 2 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 0\\{n^2} - 3m + 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 0\\2 = 0\end{array} \right.\) vô lý. Vậy c) sai.
d) Để \(\vec a = \vec b\) thì \(\left\{ \begin{array}{l}m - n = 1\\4m - 6n = - 4\\{n^2} - 3m + 2 = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\\{n^2} - 3m + 2 = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\\16 - 15 + 2 = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\end{array} \right.\) \( \Rightarrow m + n = 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.