Một chiếc đèn trang trí hình tròn được treo song song với mặt phẳng trần nhà nằm ngang bởi ba sợi dây không giãn \(OA,\,OB,\,OC\) đôi một vuông góc (như hình vẽ dưới đây). Biết lực căng dây tương ứng trên mỗi dây \(OA,\,OB,\,OC\) lần lượt là \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) thỏa mãn \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 16\](N). Tính trọng lượng (đơn vị: N) của chiếc đèn đó. (Làm tròn kết quả đến hàng phần chục).

Một chiếc đèn trang trí hình tròn được treo song song với mặt phẳng trần nhà nằm ngang bởi ba sợi dây không giãn \(OA,\,OB,\,OC\) đôi một vuông góc (như hình vẽ dưới đây). Biết lực căng dây tương ứng trên mỗi dây \(OA,\,OB,\,OC\) lần lượt là \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) thỏa mãn \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 16\](N). Tính trọng lượng (đơn vị: N) của chiếc đèn đó. (Làm tròn kết quả đến hàng phần chục).

Câu hỏi trong đề: Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) !!
Quảng cáo
Trả lời:

ĐS: \(27,7\)
Ta có: \[P = \left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right|\].
Vẽ hình vuông \(OAEB\), ta có \[\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OE} \]. (Quy tắc hình bình hành)
Vẽ hình chữ nhật \(OCFE\), ta có \[\overrightarrow {OC} + \overrightarrow {OE} = \overrightarrow {OF} \]. (Quy tắc hình bình hành)
Suy ra: \[P = \left| {\overrightarrow {OF} } \right| = OF\].
Xét hình vuông \(OAEB\), cạnh \(16\), có đường chéo \(OE = 16\sqrt 2 \).
Xét tam giác vuông \(OEF\), vuông tại \(E\), có \(OF = \sqrt {O{E^2} + E{F^2}} = \sqrt {{{\left( {16\sqrt 2 } \right)}^2} + {{16}^2}} = 16\sqrt 3 \approx 27,7\)
Vậy \(P \approx 27,7\)(N).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A) Sai B) Sai C) Đúng D) Đúng
Từ giả thiết, ta có \(\overrightarrow a \bot \overrightarrow b ;\,\,\,\cos \left( {\overrightarrow a ,\overrightarrow c } \right) = \cos \widehat {DAC'} = \frac{1}{{\sqrt 3 }};\,\,\,\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \cos \widehat {BAC'} = \frac{1}{{\sqrt 3 }}.\)
A) Giả sử \(\overrightarrow a + \overrightarrow b = \overrightarrow d \). Theo quy tắc hình bình hành thì \(\overrightarrow d \ne \overrightarrow {AC'} \) .
Suy ra \(\overrightarrow a + \overrightarrow b \ne \overrightarrow c \).
B) \(\left| {\overrightarrow a + \overrightarrow b } \right| = 10\sqrt 2 \) (đường chéo hình vuông cạnh bằng 10).
C) Ta có
\( \bullet \,{(\overrightarrow a + \overrightarrow c )^2} = {\left| {\overrightarrow a } \right|^2} + 2\,\overrightarrow a .\,\overrightarrow {c\,} + {\left| {\overrightarrow c } \right|^2} = {10^2} + 2.10.10\sqrt 3 .\frac{1}{{\sqrt 3 }} + {\left( {10\sqrt 3 } \right)^2} = 600\)
Suy ra \(\left| {\overrightarrow a + \overrightarrow c } \right| = \sqrt {600} \)
\( \bullet \,{(\overrightarrow b + \overrightarrow c )^2} = {\left| {\overrightarrow b } \right|^2} + 2\,\overrightarrow b .\,\overrightarrow {c\,} + {\left| {\overrightarrow c } \right|^2} = {10^2} + 2.10.10.\sqrt 3 .\frac{1}{{\sqrt 3 }} + {\left( {10\sqrt 3 } \right)^2} = 600\)
Suy ra \(\left| {\overrightarrow b + \overrightarrow c } \right| = \sqrt {600} \)
Vậy \[\left| {\overrightarrow a + \overrightarrow c } \right| = \left| {\overrightarrow b + \overrightarrow c } \right|.\]ĐÚNG.
D) Giả sử lực tổng hợp là \[\overrightarrow m \], tức là \[\overrightarrow m = \overrightarrow a + \overrightarrow b + \overrightarrow c .\] Do đó
\[\overrightarrow m = \overrightarrow a + \overrightarrow b + \overrightarrow c \Leftrightarrow {\left| {\overrightarrow m } \right|^2} = {\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)^2}\]
\[ \Leftrightarrow {\left| {\overrightarrow m } \right|^2} = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} + 2\overrightarrow a .\overrightarrow b + 2\overrightarrow b .\overrightarrow c + 2\overrightarrow c .\overrightarrow a \]
\[ \Leftrightarrow {\left| {\overrightarrow m } \right|^2} = {10^2} + {10^2} + {\left( {10\sqrt 3 } \right)^2} + 0 + 2.10.10\sqrt 3 .\frac{1}{{\sqrt 3 }} + 2.10.10\sqrt 3 .\frac{1}{{\sqrt 3 }} = 900\]
\[ \Leftrightarrow \left| {\overrightarrow m } \right| = 30\]
Vậy cường độ hợp lực của \[\overrightarrow a ,\,\overrightarrow b \] và \[\overrightarrow c \]là \[30(N).\]
Lời giải
Trả lời: \(2\)
Đặt \(\overrightarrow {OA} = \vec a,\overrightarrow {OB} = \vec b,\overrightarrow {OC} = \vec c\).
Khi đó, \(\left| {\vec a\left| = \right|\vec b\left| = \right|\vec c} \right| = 1\) và \(\vec a \cdot \vec b = \vec a \cdot \vec c = \vec b \cdot \vec c = 0\).
Ta có: \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left| \cdot \right|\overrightarrow {AC} } \right|}}\).
Mặt khác, do \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {\vec a + \vec b} \right)\)
và \(\overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} = \vec c - \vec a\) nên \(\overrightarrow {OM} \cdot \overrightarrow {AC} = \frac{1}{2}\left( {\vec a + \vec b} \right) \cdot \left( {\vec c - \vec a} \right)\)\( = \frac{1}{2}\left( {\vec a \cdot \vec c - {{\vec a}^2} + \vec b \cdot \vec c - \vec b \cdot \vec a} \right) = - \frac{1}{2}.\)
Ta lại có: \[\left| {\overrightarrow {OM} } \right| = OM = \frac{{\sqrt 2 }}{2};\left| {\overrightarrow {AC} } \right| = AC = \sqrt 2 \].
Do đó, \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left| \cdot \right|\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 1}}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = \frac{{ - 1}}{2}\).
Vậy \(Q = a.b = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

