Câu hỏi:

02/10/2025 11 Lưu

Một chiếc đèn trang trí hình tròn được treo song song với mặt phẳng trần nhà nằm ngang bởi ba sợi dây không giãn \(OA,\,OB,\,OC\) đôi một vuông góc (như hình vẽ dưới đây). Biết lực căng dây tương ứng trên mỗi dây \(OA,\,OB,\,OC\) lần lượt là \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) thỏa mãn \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 16\](N). Tính trọng lượng (đơn vị: N) của chiếc đèn đó. (Làm tròn kết quả đến hàng phần chục).

Một chiếc đèn trang trí hình tròn được treo song song với mặt phẳng trần nhà nằm ngang bởi ba sợi dây không giãn OA,OB,OC đôi một vuông góc (như hình vẽ dưới đây) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một chiếc đèn trang trí hình tròn được treo song song với mặt phẳng trần nhà nằm ngang bởi ba sợi dây không giãn OA,OB,OC đôi một vuông góc (như hình vẽ dưới đây) (ảnh 2)

ĐS: \(27,7\)

Ta có: \[P = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right|\].

Vẽ hình vuông \(OAEB\), ta có \[\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OE} \]. (Quy tắc hình bình hành)

Vẽ hình chữ nhật \(OCFE\), ta có \[\overrightarrow {OC}  + \overrightarrow {OE}  = \overrightarrow {OF} \]. (Quy tắc hình bình hành)

Suy ra: \[P = \left| {\overrightarrow {OF} } \right| = OF\].

Xét hình vuông \(OAEB\), cạnh \(16\), có đường chéo \(OE = 16\sqrt 2 \).

Xét tam giác vuông \(OEF\), vuông tại \(E\), có \(OF = \sqrt {O{E^2} + E{F^2}}  = \sqrt {{{\left( {16\sqrt 2 } \right)}^2} + {{16}^2}}  = 16\sqrt 3  \approx 27,7\)

Vậy \(P \approx 27,7\)(N).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(2\)

Đặt \(\overrightarrow {OA}  = \vec a,\overrightarrow {OB}  = \vec b,\overrightarrow {OC}  = \vec c\).

Khi đó, \(\left| {\vec a\left|  =  \right|\vec b\left|  =  \right|\vec c} \right| = 1\) và \(\vec a \cdot \vec b = \vec a \cdot \vec c = \vec b \cdot \vec c = 0\).

Ta có: \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}}\).

Mặt khác, do \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {\vec a + \vec b} \right)\)

và \(\overrightarrow {AC}  = \overrightarrow {OC}  - \overrightarrow {OA}  = \vec c - \vec a\) nên \(\overrightarrow {OM}  \cdot \overrightarrow {AC}  = \frac{1}{2}\left( {\vec a + \vec b} \right) \cdot \left( {\vec c - \vec a} \right)\)\( = \frac{1}{2}\left( {\vec a \cdot \vec c - {{\vec a}^2} + \vec b \cdot \vec c - \vec b \cdot \vec a} \right) =  - \frac{1}{2}.\)

Ta lại có: \[\left| {\overrightarrow {OM} } \right| = OM = \frac{{\sqrt 2 }}{2};\left| {\overrightarrow {AC} } \right| = AC = \sqrt 2 \].

Do đó, \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 1}}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = \frac{{ - 1}}{2}\).

Vậy \(Q = a.b = 2\).

Lời giải

a) Đ

b) S

c) Đ

d) S

a) Ta có \(\vec u = m\vec i + 2\vec j - 3\vec k\)\( \Rightarrow \vec u = \left( {m;\,2;\, - 3} \right)\), \(\vec v = m\vec j + 2\vec i + 4\vec k\)\( \Rightarrow \vec v = \left( {2;\,m;\,4} \right)\).

Theo đề bài \(\vec u.\vec v = 8 \Rightarrow 2m + 2m - 3.4 = 8 \Leftrightarrow m = 5.\)

b) Ta có \(\cos \left( {\overrightarrow u ;\,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{ - 3}}{{\sqrt 6 .\sqrt 6 }} =  - \frac{1}{2} \Rightarrow \left( {\overrightarrow u ;\,\overrightarrow v } \right) = 120^\circ \).

c) Ta có: \(B\left( {2;0;0} \right)\), \(C'\left( {0;2;2} \right)\) nên \(\overrightarrow {BC'}  = \left( { - 2;2;2} \right)\).

\(A'\left( {0;0;2} \right)\), \(C\left( {0;2;0} \right)\) nên \(\overrightarrow {A'C}  = \left( {0;2; - 2} \right)\).

\( \Rightarrow \overrightarrow {BC'} .\overrightarrow {A'C}  = 0\).

d) Công thức tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \), với \(\overrightarrow a \) và \(\overrightarrow b \) khác \(\overrightarrow 0 \):\(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP