Người ta cần lắp một camera phía trên sân bóng để phát sóng truyền hình một trận bóng đá, camera có thể di động để luôn thu được hình ảnh rõ nét về diễn biến trên sân. Các kĩ sư dự định trồng bốn chiếc cột cao \(30{\rm{\;m}}\) và sử dụng hệ thống cáp gắn vào bốn đầu cột để giữ camera ở vị trí mong muốn.
Mô hình thiết kế được xây dựng như sau: Trong hệ trục toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là \(1{\rm{\;m}})\), các đỉnh của bốn chiếc cột lần lượt là các điểm \(M\left( {90;0;30} \right)\), \(N\left( {90;120;30} \right),P\left( {0;120;30} \right),Q\left( {0;0;30} \right)\).
Giả sử \({K_0}\) là vị trí ban đầu của camera có cao độ bằng 25 và \({K_0}M = {K_0}N = {K_0}P = {K_0}Q\). Để theo dõi quả bóng đến vị trí \(A\), camera được hạ thấp theo phương thẳng đứng xuống điểm \({K_1}\) cao độ bằng 19.

Tọa độ của vectơ \(\overrightarrow {{K_0}{K_1}} = \left( {a;b;c} \right)\)với \(a,b,c\) là các số thực. Tính \(P = a + b - c\)?
Người ta cần lắp một camera phía trên sân bóng để phát sóng truyền hình một trận bóng đá, camera có thể di động để luôn thu được hình ảnh rõ nét về diễn biến trên sân. Các kĩ sư dự định trồng bốn chiếc cột cao \(30{\rm{\;m}}\) và sử dụng hệ thống cáp gắn vào bốn đầu cột để giữ camera ở vị trí mong muốn.
Mô hình thiết kế được xây dựng như sau: Trong hệ trục toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là \(1{\rm{\;m}})\), các đỉnh của bốn chiếc cột lần lượt là các điểm \(M\left( {90;0;30} \right)\), \(N\left( {90;120;30} \right),P\left( {0;120;30} \right),Q\left( {0;0;30} \right)\).
Giả sử \({K_0}\) là vị trí ban đầu của camera có cao độ bằng 25 và \({K_0}M = {K_0}N = {K_0}P = {K_0}Q\). Để theo dõi quả bóng đến vị trí \(A\), camera được hạ thấp theo phương thẳng đứng xuống điểm \({K_1}\) cao độ bằng 19.

Tọa độ của vectơ \(\overrightarrow {{K_0}{K_1}} = \left( {a;b;c} \right)\)với \(a,b,c\) là các số thực. Tính \(P = a + b - c\)?
Câu hỏi trong đề: Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) !!
Quảng cáo
Trả lời:
Trả lời: \(6\)

Trong mặt phẳng \(OQNF\):
Qua điểm \[{K_0}\] kẻ đường thẳng song song với \(NQ\), đường thẳng này cắt \(OQ,NF\)lần lượt tại \({Q_0};{N_0}\). Khi đó: \({Q_0}\left( {0;0;25} \right);{N_0}\left( {90;120;25} \right)\).
Trung điểm \[{K_0}\] của \({Q_0}{N_0}\) có tọa độ: \({K_0}\left( {45;60;25} \right)\).
Qua điểm \[{K_1}\] kẻ đường thẳng song song với \(NQ\), đường thẳng này cắt \(OQ,NF\)lần lượt tại \({Q_1};{N_1}\). Khi đó: \({Q_1}\left( {0;0;19} \right);{N_1}\left( {90;120;19} \right)\).
Trung điểm \[{K_1}\] của \({Q_1}{N_1}\) có tọa độ: \({K_1}\left( {45;60;19} \right)\).
Khi đó: \(\overrightarrow {{K_0}{K_1}} = \left( {0;0; - 6} \right)\)\( \Rightarrow P = a + b - c = 6\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐS: \(3,74\).
Ta có: \[{\left| {\vec a + \vec b} \right|^2} = {\left( {\vec a + \vec b} \right)^2} = {\left| {\vec a} \right|^2} + 2\vec a\vec b + {\left| {\vec b} \right|^2}\]\( \Rightarrow 2\vec a\vec b = {\left| {\vec a + \vec b} \right|^2} - {\left| {\vec a} \right|^2} - {\left| {\vec b} \right|^2} = 11\).
\[{\left| {\vec a - \vec b} \right|^2} = {\left( {\vec a - \vec b} \right)^2} = {\left| {\vec a} \right|^2} - 2\vec a\vec b + {\left| {\vec b} \right|^2} = 9 - 11 + 16 = 14\]\( \Rightarrow \left| {\vec a - \vec b} \right| = \sqrt {14} \approx 3,74\).
Lời giải
a) Đ
b) S
c) Đ
Gọi \(D\left( {x;\,\,y} \right)\). Khi đó , \(\overrightarrow {DC} = \left( {1 - x;\,\,1 - y;\, - 2 - z\,} \right)\)
Vì \(ABCD\)là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \Rightarrow \left\{ \begin{array}{l} - 3 = 1 - x\\ - 1 = 1 - y\\ - 1 = - 2 - z\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\\z = - 1\end{array} \right.\)
Vậy \(D\left( {4;\,\,2;\,\, - 1} \right)\)
d) Đ
Gọi \(H\left( {x;y;z} \right)\) là trực tâm tam giác \(ABC\).
Khi đó tọa độ điểm \(H\) thỏa mãn \( \Leftrightarrow \)\(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AH} \, = 0\end{array} \right.\)\( \Leftrightarrow \)\(\left\{ \begin{array}{l}2x - y - 2z = - 1\\x + 2y + 3z = 3\\x - 8y + 5z = - 17\end{array} \right.\).
Suy ra \(H\left( {\frac{2}{{15}};\frac{{29}}{{15}}; - \frac{1}{3}} \right)\).
Vậy \[OH = \frac{{\sqrt {870} }}{{15}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

