Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA, EB, EC, ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng \({45^0}\). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết trọng lượng chiếc xe ô tô là \[4000\,N\] và trọng lượng khung sắt là \[2000N\]; cường độ các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) là bằng nhau. Tính cường độ lực căng \(\overrightarrow {{F_1}} \)

Câu hỏi trong đề: Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) !!
Quảng cáo
Trả lời:

Ta đơn giản hoá mô hình bài toán thông qua hình vẽ sau (\(\overrightarrow {EO} \) cùng hướng với véctơ trọng lực của ô tô và khung sắt).
Theo giả thiết ta có \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} , + \overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 6000.\)Mặt khác:\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = \left| {4\overrightarrow {EO} } \right| = 4EO.\)
Suy ra \(EO = 1500.\)
Ta có \(\left( {ED,(ABCD)} \right) = \widehat {EDO} = {45^0}\). Như vậy \(ED = \frac{{EO}}{{\sin {{45}^0}}} = 1500\sqrt 2 .\)
Cường độ lực căng \(\overrightarrow {{F_1}} \) là \(1500\sqrt 2 N\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
b) Đúng.
Ta có: \(\overrightarrow {A'A} + \overrightarrow {A'B'} - \overrightarrow {CM} = \overrightarrow {A'A} + \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {A'B} + \overrightarrow {BM} = \overrightarrow {A'M} \)
c) Sai.
Ta có: \(\overrightarrow {A'M} .\overrightarrow {AC} = \left( {\overrightarrow {A'A} + \overrightarrow {AM} } \right).\overrightarrow {AC} = \overrightarrow {A'A} .\overrightarrow {AC} + \overrightarrow {AM} .\overrightarrow {AC} = \overrightarrow {AM} .\overrightarrow {AC} = \frac{{a\sqrt 3 }}{2}.a.\cos 30^\circ = \frac{{3{a^2}}}{4}\)
d) Đúng.
Ta có \(\overrightarrow {AB'} .\overrightarrow {BC'} = \left( {\overrightarrow {AB} + \overrightarrow {BB'} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CC'} } \right)\)\( = \overrightarrow {AB} .\overrightarrow {BC} + \overrightarrow {AB} .\overrightarrow {CC'} + \overrightarrow {BB'} .\overrightarrow {BC} + \overrightarrow {BB'} .\overrightarrow {CC'} \)
\( = \overrightarrow {AB} .\overrightarrow {BC} + \overrightarrow {AB} .\overrightarrow {CC'} + \overrightarrow {BB'} .\overrightarrow {BC} + \overrightarrow {BB'} .\overrightarrow {CC'} \)\( = - \frac{{{a^2}}}{2} + 0 + 0 + 2{a^2} = \frac{{3{a^2}}}{2}\)
Suy ra \(\cos \left( {\overrightarrow {AB'} ,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'} .\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right|.\left| {\overrightarrow {BC'} } \right|}}\)\( = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3 .a\sqrt 3 }} = \frac{1}{2} \Rightarrow \left( {\overrightarrow {AB'} ,\overrightarrow {BC'} } \right) = 60^\circ \)
Lời giải
a) Đúng.
Ta có \(\overrightarrow {AB} \left( {3;\, - 4;\,3} \right),\,\overrightarrow {AC} \left( {1; - 6;0} \right)\). Giả sử tồn tại số \(k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \Leftrightarrow \left\{ \begin{array}{l}3 = k\\ - 4 = - 6k\\3 = 0k\end{array} \right.\) vô nghiệm suy ra không tồn tại \(k\). Suy ra 3 điểm \(A,B,C\) không thẳng hàng.
b) Đúng.
Ta có \(\overrightarrow {AB} \left( {3;\, - 4;\,3} \right),\,\overrightarrow {AD} \left( {6; - 8;6} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AC} \). Vậy 3 điểm \(A,B,D\) thẳng hàng.
c) Sai.
Ta có \(cos\left( {\overrightarrow {AB} ;\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{3 + 24}}{{\sqrt {9 + 9 + 16} .\sqrt {1 + 36} }} = \frac{{27\sqrt {1258} }}{{1258}}\).
d) Sai.
Ta có \(\overrightarrow u \bot \overrightarrow {AB} ;\overrightarrow u \bot \overrightarrow {AC} \Rightarrow \overrightarrow u = \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {18;3; - 14} \right) = \left( {x - 1;2x + 1;3z - 5} \right)\)
Suy ra
\[\left\{ \begin{array}{l}x - 1 = 18\\2y + 1 = 3\\3z - 5 = - 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 19\\y = 1\\z = - 3\end{array} \right. \Rightarrow {x^2} + {y^2} + {z^2} = {19^2} + 1 + 9 = 371\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.