Câu hỏi:

07/10/2025 241 Lưu

Trên khoảng \(\left( { - \infty ; + \infty } \right)\), hàm số \[F\left( x \right) = \frac{1}{2}\sin 2x\] là một nguyên hàm của hàm số nào dưới đây?

A. \({f_3}\left( x \right) = - \frac{1}{2}\cos 2x\).                                 
B. \({f_4}\left( x \right) = - \frac{1}{4}\cos 2x\).       
C. \({f_2}\left( x \right) = \cos 2x\).                                 
D. \({f_1}\left( x \right) = - \cos 2x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \({\left( {\frac{1}{2}\sin 2x} \right)^\prime } = \cos 2x\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(N'\left( 1 \right) = 18.1 - {3.1^2} = 15\) triệu tế bào/ml giờ.

b) Sai. Ta có \(\int {N'\left( t \right){\rm{d}}t}  = \int {\left( {18t - 3{t^2}} \right){\rm{d}}t}  = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).

c) Đúng. Ta có \(N\left( t \right) = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).

Mà \(N\left( 0 \right) = 10\) nên \(C = 10\).  Vậy \(N\left( t \right) = 9{t^2} - {t^3} + 10\).

Tại thời điểm \(t = 6\), ta có \(N\left( 6 \right) = {9.6^2} - {6^3} + 10 = 118\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml nên tại thời điểm \(t = 6\), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml.

d) Đúng. Tại thời điểm \(t = 7\) giờ, ta có \(N\left( 7 \right) = {9.7^2} - {7^3} + 10 = 108\) nên mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.

Lời giải

Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t}  = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t}  = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).

Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ

Một chiếc đồng hồ cát như hình vẽ gồm hai phần đối xứng nhau qua mặt phẳng nằm ngang và đặt trong một hình trụ. Thiết diện thẳng đứng qua trục của nó là hai parabol chung đỉnh và đối xứng nhau qua mặt phẳng nằm ngang.  (ảnh 2)

Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4  \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).

Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x}  = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).

Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).

Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).

Đáp án: 21.

Câu 3

A. \(F\left( x \right) = 3{x^3} + 5\).        
B. \(F\left( x \right) = {x^3} - 5\).         
C. \(F\left( x \right) = {x^3} + 5\).         
D. \(F\left( x \right) = 6x + 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc \(0\,\,\left( {{\rm{m/s}}} \right)\) đến \(10\,\,\left( {{\rm{m/s}}} \right)\) trong thời gian chưa biết \({t_1}\)​ giây theo hàm số vận tốc \({v_1}\left( t \right) = at\) (\(a\) gọi là gia tốc trong giai đoạn này, \(a\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Sau đó, robot tiếp tục di chuyển với vận tốc không đổi trong 40 giây. Cuối cùng, robot giảm tốc đều từ \(10\,\,\left( {{\rm{m/s}}} \right)\) và dừng lại đúng tại băng chuyền điểm \(B\) với thời gian \({t_2}\) giây theo hàm vận tốc \({v_2}\left( t \right) = 10 - bt\)(\(b\)gọi là gia tốc trong giai đoạn này, \(b\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Toàn bộ quá trình vận chuyển diễn ra trong tổng thời gian là 70 giây.

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc (ảnh 1)

a) Nếu gia tốc \(a = 0,5\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian tăng tốc \({t_1}\) bé hơn \(21\) giây.

b) Nếu gia tốc \(b = 0,8\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian giảm tốc \({t_2}\) lớn hơn \(13\) giây.

c) \(a + b \le \,\frac{5}{4}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

d) Tổng quãng đường mà robot đã di chuyển từ \(A\) đến \(B\) là \(550\,{\rm{m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \int\limits_0^7 {( - \sin x + {\rm{cos}}x){\rm{d}}x} \).                                     
B. \[S = \int\limits_0^7 {\left| {{\rm{sin}}x - {\rm{cos}}x} \right|} {\rm{d}}x\]
C. \[S = \int\limits_0^7 {({\rm{sin}}x - {\rm{cos}}x){\rm{d}}x} \].                                  
D. \[S = \int\limits_0^7 {({\rm{sin}}x + {\rm{cos}}x){\rm{d}}x} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP