Một cái cổng hình Parabol như hình vẽ sau:

Chiều cao \(GH = 4\,{\rm{m}}\), chiều rộng \(AB = 4\,{\rm{m}}\), \(AC = BD = 0,9\,{\rm{m}}\). Chủ nhà làm hai cánh cổng nhựa lõi thép UPVC, khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1\,500\,000\) đồng/m2, còn các phần để trắng làm xiên hoa có giá là \(1\,000\,000\) đồng/m2. Tổng số tiền để làm hai phần nói trên là bao nhiêu triệu đồng? (kết quả làm tròn đến hàng phần chục).
Một cái cổng hình Parabol như hình vẽ sau:

Quảng cáo
Trả lời:
Đặt hệ trục \(Oxy\) như hình vẽ.
Gọi PT Parabol có dạng: \(\left( P \right):\,\,y = a{x^2} + bx + c\).
\(\left( P \right)\) có đỉnh \(G\left( {0;\,4} \right)\) và đi qua \(B\left( {2;\,0} \right)\) suy ra: \(a = - 1;\,b = 0;\,c = 4\) \( \Rightarrow \left( P \right):\,\,y = - {x^2} + 4\).
Ta có: \({x_E} = {x_D} = 1,1 \Rightarrow {y_E} = - 1,{1^2} + 4 = 2,79\) \( \Rightarrow ED = 2,79\).
\({S_{CDEF}} = CD.DF = 2,2.2,79 = 6,138\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Diện tích hình phẳng giới hạn bởi Parabol \(\left( P \right)\) và trục hoành là
\({S_{\left( P \right)}} = \int\limits_{ - 2}^2 {\left( { - {x^2} + 4} \right)} = \frac{{32}}{3}\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Suy ra diện tích làm xiên hoa là: \(S = {S_{\left( P \right)}} - {S_{CDEF}} = \frac{{6793}}{{1500}}\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Đổi đơn vị: \(1\,500\,000\) đồng/m2 \( = 1\,,5\) triệu đồng/m2, \(1\,000\,000\) đồng/m2 \( = 1\,\)triệu đồng/m2.
Tổng số tiền để làm hai phần nói trên là:
\(T = 6,138.1,5 + \frac{{6793}}{{1500}}.1 \approx 13,7\) (triệu đồng).
Đáp án: 13,7.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(N'\left( 1 \right) = 18.1 - {3.1^2} = 15\) triệu tế bào/ml giờ.
b) Sai. Ta có \(\int {N'\left( t \right){\rm{d}}t} = \int {\left( {18t - 3{t^2}} \right){\rm{d}}t} = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).
c) Đúng. Ta có \(N\left( t \right) = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).
Mà \(N\left( 0 \right) = 10\) nên \(C = 10\). Vậy \(N\left( t \right) = 9{t^2} - {t^3} + 10\).
Tại thời điểm \(t = 6\), ta có \(N\left( 6 \right) = {9.6^2} - {6^3} + 10 = 118\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml nên tại thời điểm \(t = 6\), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml.
d) Đúng. Tại thời điểm \(t = 7\) giờ, ta có \(N\left( 7 \right) = {9.7^2} - {7^3} + 10 = 108\) nên mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.
Câu 2
Lời giải
Chọn C
Ta có \({\left( {\frac{1}{2}\sin 2x} \right)^\prime } = \cos 2x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

