Câu hỏi:

03/10/2025 16 Lưu

Trong không gian Oxyz, cho bốn điểm \(A\left( {2;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;2} \right)\)\(D\left( {2;2;2} \right)\). Gọi \(M\)\(N\) lần lượt là trung điểm của ABCD. Tọa độ trung điểm \(I\) của đoạn thẳng MN là:

A. \(I\left( {1;1;0} \right)\).                                 
B. \(I\left( {\frac{1}{2};\frac{1}{2};1} \right)\).                  
C. \(I\left( {1;1;1} \right)\).             
D. \(I\left( {1; - 1;2} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Vì \(I\left( {x;y;z} \right)\) là trung điểm \(MN\) nên ta có: \[2\overrightarrow {IM}  + 2\overrightarrow {IN}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow 0 \].

Suy ra \(\left\{ \begin{array}{l}x = \frac{{2 + 0 + 0 + 2}}{4}\\y = \frac{{0 + 2 + 0 + 2}}{4}\\z = \frac{{0 + 0 + 2 + 2}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\\z = 1\end{array} \right.\). Vậy \(I\left( {1;1;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân. Trọng lực tác dụng lên chiếc máy có độ lớn là \(30{\rm{N}}\) và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2} (ảnh 2)

Gán các lực \[\overrightarrow {{F_1}}  = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}}  = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}}  = \overrightarrow {SC} .\]

Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SBG} = 60^\circ  \Rightarrow SG = SA.\sin 60^\circ  = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)

Vì \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG}  \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)

Đáp án: 11,5.

Lời giải

Ta có: \(\overrightarrow {OA}  = 10\vec k \Rightarrow A\left( {0;0;10} \right)\) và \(OH = OB.\cos 30^\circ  = \frac{{15\sqrt 3 }}{2}\); \(OK = OB.\cos \left( {90^\circ  - 30^\circ } \right) = \frac{{15}}{2}\)

\[ \Rightarrow {\rm{ }}B\left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2};0} \right) \Rightarrow \overrightarrow {AB}  = \left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2}; - 10} \right)\]. Vậy \(a + c = 2,5\).

Đáp án: 2,5.