Câu hỏi:

03/10/2025 11 Lưu

Trong không gian Oxyz, cho hai vectơ \[\overrightarrow a = \left( {1; - 2;1} \right)\]\[\overrightarrow b = \left( {2; - 4; - 2} \right)\]. Khi đó \[\overrightarrow a .\overrightarrow b \] bằng

A. 8.                                
B. \[ - 8\].                      
C. 12.                                   
D. \[ - 12\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có: \[\overrightarrow a .\overrightarrow b  = 1.2 + \left( { - 2} \right).\left( { - 4} \right) + 1.\left( { - 2} \right) = 8\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {AB}  = \left( { - 1; - 1;1} \right) \Rightarrow AB = \sqrt 3 ,\overrightarrow {AC}  = \left( {1; - 1;0} \right) \Rightarrow AC = \sqrt 2 \), \(\overrightarrow {BC}  = \left( {2;0; - 1} \right) \Rightarrow BC = \sqrt 5 \).

a) Đúng. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 0\) do đó \(AB \bot AC\), tam giác \(ABC\) vuông tại \(A\).

b) Sai. Chu vi của tam giác là \(AB + AC + BC = \sqrt 3  + \sqrt 2  + \sqrt 5 \).

c) Sai. Diện tích là \(S = \frac{1}{2} \cdot AB \cdot AC = \frac{{\sqrt 6 }}{2}\).

d) Đúng. Tâm đường tròn ngoại tiếp là trung điểm của \(BC\) có tọa độ \(I\left( {1;1;\frac{1}{2}} \right)\).

Lời giải

Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân. Trọng lực tác dụng lên chiếc máy có độ lớn là \(30{\rm{N}}\) và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2} (ảnh 2)

Gán các lực \[\overrightarrow {{F_1}}  = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}}  = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}}  = \overrightarrow {SC} .\]

Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SBG} = 60^\circ  \Rightarrow SG = SA.\sin 60^\circ  = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)

Vì \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG}  \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)

Đáp án: 11,5.

Câu 4

A. \(\left( {3;6;3} \right)\).                                  
B. \(\left( {3;6; - 3} \right)\).          
C. \(\left( {3; - 3;6} \right)\).                          
D. \(\left( {3;2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP