Câu hỏi:

03/10/2025 10 Lưu

Trong không gian Oxyz cho điểm \[G\left( {1; - 2;3} \right)\] và ba điểm \[A\left( {a;0;0} \right)\]; \[B\left( {0;b;0} \right)\]; \[C\left( {0;0;c} \right)\]. Biết \[G\] là trọng tâm của tam giác ABC thì \[a + b + c\] bằng

A. 3.                                
B. 9.                              
C. 6.                                     
D. 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có trọng tâm \[G\] của tam giác \[ABC\]: \[\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}1 = \frac{a}{3}\\ - 2 = \frac{b}{3}\\3 = \frac{c}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b =  - 6\\c = 9\end{array} \right.\].

Khi đó: \[a + b + c = 3 + \left( { - 6} \right) + 9 = 6\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {AB}  = \left( { - 1; - 1;1} \right) \Rightarrow AB = \sqrt 3 ,\overrightarrow {AC}  = \left( {1; - 1;0} \right) \Rightarrow AC = \sqrt 2 \), \(\overrightarrow {BC}  = \left( {2;0; - 1} \right) \Rightarrow BC = \sqrt 5 \).

a) Đúng. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 0\) do đó \(AB \bot AC\), tam giác \(ABC\) vuông tại \(A\).

b) Sai. Chu vi của tam giác là \(AB + AC + BC = \sqrt 3  + \sqrt 2  + \sqrt 5 \).

c) Sai. Diện tích là \(S = \frac{1}{2} \cdot AB \cdot AC = \frac{{\sqrt 6 }}{2}\).

d) Đúng. Tâm đường tròn ngoại tiếp là trung điểm của \(BC\) có tọa độ \(I\left( {1;1;\frac{1}{2}} \right)\).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG}  = \frac{1}{4}\left( {\overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {AG}  + \overrightarrow {OB}  + \overrightarrow {BG}  + \overrightarrow {OC}  + \overrightarrow {CG}  + \overrightarrow {OD}  + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\].

c) Đúng. \[\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  =  - \overrightarrow {GB}  = \overrightarrow {BG} \].

d) Sai. \[\overrightarrow {AG}  = \overrightarrow {AO}  + \overrightarrow {OG}  = \overrightarrow {AO}  + \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = \overrightarrow {AO}  + \frac{1}{4}\left( {4\overrightarrow {OA}  + \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO}  + \overrightarrow {OA}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].

Câu 4

A. \(\left( {3;6;3} \right)\).                                  
B. \(\left( {3;6; - 3} \right)\).          
C. \(\left( {3; - 3;6} \right)\).                          
D. \(\left( {3;2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP