Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \(\vec a = \left( {3\,;\, - 2\,;\,m} \right)\), \(\overrightarrow b = \left( {2\,;\,m\,;\, - 1} \right)\) với \(m\) là tham số nhận giá trị thực. Tìm giá trị của \(m\) để hai vectơ \(\vec a\) và \(\overrightarrow b \) vuông góc với nhau.
Quảng cáo
Trả lời:
Chọn B
Hai vectơ \(\vec a\) và \(\overrightarrow b \)vuông góc với nhau khi và chỉ khi \(\vec a\,.\,\overrightarrow b = 0 \Leftrightarrow 3.2 + \left( { - 2} \right).m + m.\left( { - 1} \right) = 0\)\( \Leftrightarrow 6 - 3m = 0 \Leftrightarrow m = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SBG} = 60^\circ \Rightarrow SG = SA.\sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)
Đáp án: 11,5.
Lời giải

Gọi I là tâm của hình chữ nhật \[ABCD\].
Ta có \(BD = \sqrt[{}]{{{{900}^2} + {{1200}^2}}} = 1500 \Rightarrow ID = 750\).
Theo giả thiết ta có \(\tan \widehat {SDI} = \frac{1}{5} \Rightarrow \frac{{SI}}{{ID}} = \frac{1}{5} \Rightarrow SI = \frac{1}{5}ID = \frac{1}{5}.750 = 150\).
Gọi H là tâm của hình chữ nhật OKNM. Từ giả thiết ta có \(H\left( {450;600;0} \right)\).
Ta có \(SH = IH + SI = 450 + 150 = 600\).
Do đó \(S\left( {450;600;600} \right) \Rightarrow a + b + c = 450 + 600 + 600 = 1650\).
Đáp án: 1650.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



